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Abstract

A higher order asymptotic analysis of the transient deformation field surround-

ing the tip of a crack running dynamically along a bimaterial interface is presented.

An asymptotic methodology is used to reduce the problem to one of the Riernann-

Hilbert type. Its solution furnishes displacement potentials which are used to ex-

plicitly evaluate the near-tip transient stress field. Crack-tip fields corresponding

to crack speeds up to the lower of the two shear wave speeds are investigated.

An experimental study of dynamic crack growth in PMMA/steel interfaces using

the optical method of CGS and high speed photography, is also described. Tran-

sonic terminal speeds (up to 1.4 ceMMA) and initial accelerations (,- 10m/sec2 ) are

reported and discussed. Transient effects are found to be severe and more im-

portant than in homogeneous dynamic fracture. For subsonic crack growth, these

experiments are used to demonstrate the necessity of employing a fully transient

expression in the analysis of optical data to accurately predict the complex dynamic

stress intensity factor history.



1 Introduction

Advanced multiphase materials such as fiber or whisker reinforced composites have seen

widespread applications in recent years. It has been recognized that interfacial fracture

may play an important role in determining the overall mechanical response of such m!ilti-

phase systems. It is the low fracture toughness of these materials, which may result from

debonding between different phases, that limits their use in engineering applications.

Therefore, the scientific understanding of the mechanics of crack formation, initiation.

and crack growth in bimaterial interfaces is essential for the effective study of failure

processes of these advanced composite materials.

The earliest study of interfacial fract-re appears to be by WILLIAMS (1959), who

examined the local fields near the tip of a traction free semi-infinite interfacial crack, ly-

ing between two otherwise perfectly bonded elastic halfspaces. He observed that, unlike

in homogeneous materials, the interfacial crack exhibits an oscillatory stress singularity.

Since then, SIH and RICE (1964), and RICE and SIH (1965) have provided explicit expres-

sions for the near-tip stresses and related them to remote elastic stress fields. The works

of ERDOGAN (1965), ENGLAND (1965), and MALYSHEV and SALGANIK (1965) have also

further examined two-dimensional singular models for single or multiple crack configura-

tions in bimaterial systems. Recent progress in static interfacial fracture includes work

by RICE (1988), HUTCHINSON and Suo (1991), and SHiH (1991).

Dlpending on the nature of loads that the composite structure is subjected to, the

debonding process may take place dynamicallLy If the interface is already weakened by

pre-existing flaws, these flaws may serve as sites of initiation of cracks which propagate

unstably along the interface under the right circumstances. Such situations have noti-

vated attempts to analyze dynamic crack propagation in interfaces. However, due to the

complexity of the problem, thus far, only a few theoretical results of dynamic bimaterial

1



crack growth have been obtained. Among others, GOL'DSHTEIN (1967), BROCK and

ACHENBACii (1973), WILLIS (1971, 1973), and ATKINSON (1977) have provided crack

line solutions of particular fracture problems. Although these analytical results have pro-

vided some insights of the near-tip dynamic behavior, in order to effectively formi'late

and apply crack initiation and growth criteria in bimaterial systems, we need knowl-

edge about the complete spatial structure of the field surrounding the moving interfacial

crack-tip.

More recently, experimental investigations of interfacial crack-tip deformation fields

have been carried out by TIPPUR and ROSAKIS (1991) and RoSAKIS et at. (1991) using

the optical method of Coherent Gradient Sensor (CGS) (ROSAKIS. 1993) and high speed

photography. The bimaterial system they used was a PMMA/aluminum combination.

They observed substantial crack-tip speeds (up to 90%c~f?') associated with crack ini-

tiation and growth. Motivated by these observations, YANG et al. (1991) provided the

asymptotic structure of the most singular term of the steady state elastodynamic bima-

terial crack-tip fields. In the work of Wu (1991), similar conclusions were reached. In

addition, DENG (1992) obtained the asymptotic series representation of the stress field

near the tip of a running interfacial crack in a bimaterial system under steady state con-

ditions. Also motivated by the experiments of TIPPUR and ROSAKIS (1991), Lo et al.

(1992) have performed a numerical analysis of the same bimaterial system as was used

in the experiments.

The question of whether there exists a KV-dominant region surrounding the crack-tip

(i.e. a region where the stress field can be well described by the leading singular term

only), or in fact whether steady state crack propagation constitutes a good assumption

in analysis, are issues to be verified by experimental observations. New expzrimentai

evidence, described in this paper, emphasize the existence of substantial crack-tip accel-

erations in addition to very high crack-tip speeds. The existence of high accelerations
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violates the conditions under which the steady state assumption may confidently be ap-

plied. Motivated by the above experimental evidence, in this paper, we investigate the

asymptotic structure of the near-tip field in a bimaterial system, where a highly transient

elastodynamic crack growth history has occured. To do so, we employ the asymptotic

procedure proposed by FREUND (1990) and utilized by FREUND and ROSAKis (1992) in

studying the transient growth of a mode-I crack in a homogeneous isotropic material. The

same procedure was employed by Liu and ROSAKIS (1992) in studying the mixed-mode

transient growth of a crack along an arbitrary curved path in a homogeneous isotropic

solid. For anisotropic solids, transient crack growth under mode-I conditions was recently

explored by WILLIS (1992).

In section 2 of the present study, the general formulation and properties of the asymp-

totic procedure are described. By using this asymptotic methodology, the equation of

motion is reduced to a series of coupled partial differential equations. In section 3, the

solution for the higher order transient problem is obtained. By imposing the boundary

conditions along the surface of the interfacial crack and the bonding conditions along the

interface ahead of the crack-tip, our problem can be further recasted into a Riemann-

Hilbert problem. Upon solving the Riemann-Hilbert equation and evaluating the Stieltjes

transforms, the higher order near-tip transient elastodynamic asymptotic field can be ob-

tained. In section 4, the asymptotic elastodynamic stress field surrounding the interfacial

crack-tip is studied. The first stress invariant is provided explicitly. The properties of

the interfacial mismatch parameters are studied in section 5. These depend on the prop-

erties of the bimaterial combination and the crack-tip speed. In some of the available

experiments by ROSAKIS et al. (1991), and the experimental evidence described in this

paper, it has been observed that an interfacial crack can reach speeds amounting to a

considerable fraction, or even exceeding the lower Rayleigh wave speed of the two con-

stituents of the interface. Recognizing that our analysis need not be limited to a velocity

regime below the lower Rayleigh wave speed, in section 6, we extend our solution to the
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case when the crack is travelling at a speed between the lower Rayleigh and shear wave

speeds. Finally, in section 7, recent experimental evidence of a transient higher order

stress field in bimaterial fracture specimens is presented. The transient theoretical fields

obtained in previous sections are used to quantitatively analyze optical interferograms

obtained in real time high speed photography of dynamic biniaterial experiments in a

PMMA/steel system. In addition, we present experimental evidence of transonic crack

growth histories involving maximum speeds between 60% and 80% of the dilatational

wave speed of PMMA. For comparison purposes, one should note that typical terminal

crack-tip speeds in homogeneous PMMA are of the order of only 20% of the dilatational

wave speed.

2 General formulation

Consider a planar body composed of two homogeneous, isotropic, and linearly elastic

materials which are bonded along a straight line interface. A crack propagates non-

uniformly along the interface, see Figure 1. Introduce a fixed orthonormal Cartesian

coordinate system (X1 ,X 2) so that the x1 -axis lies on the interface and coincides with

the direction of the propagating crack. Suppose that the crack propagates with a non-

uniform speed, v(t), and the crack faces satisfy traction free boundary conditions. At a

time t = 0, the crack-tip happens to be at the origin of the system, so the growth of the

interfacial crack at any t > 0 is characterized by the length 1(t) (v(t) = i(t)), which is

the distance from the origin to the moving crack-tip. If the deformation is assumed to

be plane strain, for each of the two materials comprising the interface, the displacement

field may be generated from two displacement potentials, Ok(xl, X2, t) and bk(XI, z 2, t),

where k E {1, 2}. Here, the integer k is assigned to distinguish between the two different

materials. In Figure 1, material-1 is the one shown above while material-2 is the one

shown below the interface. Then, in either one of the two materials, the two non-zero
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displacement components can be expressed as

u'(xi,x2,t) = ,O ( 11,x 2,t) + ec,00 (xI,x 2,t) , (2.1)

where a, 0 E {1, 2} and the summation convention has been used. eO is the two-

dimensional alternator defined by

e 2 -e 2 1 1 --l e -- e 22 = 0.

The components of stress for each material can be expressed in terms of the displacement

potentials by

-71 =' [4tki0a. -20,22 +2V),1 2 ]

2 -46 -20,11 -20,12 (2.2)

4712  f [21 2 , 12 + 0,22 - 0, 11 1

where P is the shear modulus, and cl, c, are the longitudinal and shear wave speeds of

each elastic material above or below the interface, respectively. In terms of the shear

modulus p, nass density p, and Poisson's ratio v, for each of the two materials. cl and

c, are given by

{ = , c8 = { , (2.3)

where
3- 4v, Plane strain

3- v Plane stress

The corresponding plane stress solution can be obtained by changing the definition for

the longitudinal wave speed in equation (2.3). Meanwhile, c, and c, in both plane strain

and plane stress, are related by

c, 1-/2 (2.4)
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The equation of motion in the absence of body forces in the fixed coordinate system,

in terms of O(x 1 , x 2, t) and '(xi,,z, t), reduces to

,oao(X I X2,t) - 1 (z7•2,•,t) = o

,aa(XIX2,t) - ( x 2,,t) = 0 (2.5)

C2

Equations (2.5) hold for each material above or below the interface.

We further introduce a new moving coordinate system, (ti, •2), by

ýj = X, - l(t) , t2 = X2 •(2.6)

This system is such that its origin is translating with the crack-tip. In this new system,

the equations (2.5) for 0(6, 6, t) and C6( 1, 2, t) become (FREUND, 1990)

(1/ --. 2.
1 V2 (t) €,1t) + 2v=• IJ

2 0,+,22+" , = 0

Notice that in equations (2.7), the differentiation with respect to time, t, is distinct to that

in equations (2.5). Here, (•, f) are held fixed, whereas in (2.5), (xI, x 2) are held fixed.

Throughout this study, we will use,9t or { },t to denote differentiation with respect to

time, t, when the moving spatial coordinates (C1,'2) are held fixed. The notation {

denotes the same operation when the spatial coordinates (xI, x 2) are held fixed.

At this point, we employ the standard asymptotic device used by FREUND and

ROSAKIS (1992) for the analysis of transient crack growth in homogeneous materials.

We assume that 0(61, 2, t) and i,( 1 ,4 2 , t), for each material, can be asymptotically ex-

panded as

OVI,6, 0= ZePm4,m(th, T12, f)

"" (2.8)
0(6t, , 0 = Ce' Om,(1711,Y12, 0

6=O



as r = (1 + t),/2 0. where q' = ate ,a E {1,2}, and e is a small arbitrary positive

number. The parameter e is used here so that the region around the crack-tip is expanded

to fill the entire field of observation. As e is chosen to be infinitely small, all points in

the (ýI,,2) plane except those very close to the crack-tip. are pushed out of the field

of observation in the (1h7,772) plane, and the crack line occupies the whole negative 771-

axis. By taking e = 1, the above equations will provide the asymptotic representation

of the displacement potentials in the unscaled physical plane for each of the materials,

respectively.

In the asymptotic representation (2.8), the powers of E are such that

1
Pm+1 =Pm + I, m = 0,1,2,. (2.9)

Since the displacement should be bounded throughout the region, but th'-ý stress may be

singular at the crack-tip, po is expected to be in the range 1 < p0 < 2 (FREUND, 1990).

We also should have

eP'+" O + n( 77110 --2, as e -- 0 , (2.10)
CPM OM (0/1, '?2, 0)

for any positive integer n. Returning to the unscaled physical plane, we will have

t) --+ 0 as r +, +2 --*O, (2.11)

for any positive integer n, so that in the physical plane, ((I, ý2), 0,,(i, 6, t) are ordered

according to their contributions to the near-tip deformation field. The above properties

for ,,, hold for Okm as well.

Substituting the asymptotic representations for 0(ý,, 2, t) and O(I, & t), (2.8), into

the equations of motion, (2.7), we obtain two equations whose left hand side is an infinite

power series in - and whose right hand side vanishes. Since e is an arbitrary number, the

coefficient of each power of e should be zero. Therefore, the equations cf motion reduce
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to a series of coupled differential equations for On(771,r72,.t) and t',,(771,72,t) as follows

(ROSAKIS et al., 1991, FREUND and ROSAKIS, 1992):

'km,11 + al 1 Om,22 = 2" 2 (t)Cf {V1/2 (t)'km.. 2 , it + 1 J (2.12

1 2va/,(t) 01f + 1

Cr2(t~co.(t7)C2

for m = 0,1,2,-. , and the quantities al and a, depend on the crack-tip speed, and

therefore on time t through

v 2(I 2 (2.13)
Ci's

Also
( ',m formr>0 (1m forrm>0

0 form<0 0 form< 0

In what will follow, for our convenience, we drop the subscript which is used to

distinguish between the two materials. However, we should keep in mind that the above

asymptotic form of the equations of motion (2.12) hold for each of the materials with

the appropriate elastic constants. The term "coupled" is used above in the sense that

the higher order solutions for 0km and 0. will depend on the lower order solutions for

the same quantities. It is noted that, for the special case of steady state crack growth,

the crack-tip speed, v, will be a constant, and at the same time, ,,,t = mi,t= 0, for

m = 0, 1, 2,---. This means that 0,,, and V,,k, depend on t only through the spatial scaled

coordinate ir. In such a case, the equations in (2.12) are not coupled anymore, and each

one reduces to Laplace's equation in the coordinates (r7, acx, 2) for 'km and (ih, aojr) for

t,•. For steady state conditions, the functions 0,,, and 0,. are independent of time in

the moving coordinate system. For the transient case, however, the crack-tip speed, v(t),

may be an arbitrary smooth function of time, and also 'km and Om,, may depend or, time

explicitly in the moving coordinate system. The only uncoupled equations are those for

m = 0 and m = 1. For m > 1, we can see from (2.12) that the solutions for 0,k, and P,,,

are composed of two parts. One is the particular solution which is wholely determined
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by low"er order solations for , and .,,,. The other part is the homogeneous solution

which satisfies Laplace's equation in the corresponding scaled coordinate plane. The

combination of the particular and homogeneous solutions should satisfy the traction free

conditions on the crack faces as well as the bonding conditions along the interface. In the

following sections, we will solve for 0,,, and bm for the most general transient situation,

and for both materials.

It should be noted that the steady state problem could be solved using the efficient

Stroh formulation. This formulation reduces the two spatial and one temporal variables

to only two spatial variables and takes advantage of a well known formalism to solve the

steady state crack problem (YANG et al., 1991). However, this approach, although it can

be easily be extended to anisotropic solids, is strictly restricted to steady state conditions

and cannot be used for our present purposes.
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3 Solution for the higher order transient problem

As we have discussed in the previous section, the only uncoupled equations in (2.12) are

those for m = 0 and m = 1. For mn > 1, the solutions for 0m and (,,,, will be affected

by the solutions with smaller mn. In this section, we consider the situation of mn = 0 and

rn = I first. After we get solutions for m = 0, and 1, we will subsequently solve for higher

order Om and V,,,.

3.1 Solutions for & r(rl, •,t) and yip.(91, qj2 , t) for m = 0 and 1

For m = 0, or 1, (2.12) reduce to

MI1 (171,17 2,t) + Im1 2 2 (Oh,7 2 ,t) = 0

2k(t)
(3.1)

1 I¢/',,, (771,,172, t) +j4m, 2 ,2 (i•,,1i2 ,t) = 0

The above equations are Lapalace's equations :. the corresponding scaled planes (771, a1772)

for 0,, and (r7/, acr. 2 ) for ?km. As we have mentioned earlier, the subscript k is omitted

here, but the above equations hold for both materials that constitute the bimaterial body.

The most general solutions for equations (3.1) can be expressed as

,,(?l,?i2 ,t) = Re{F,,(zi;t)} , 0.(71,?Y2,,t) = Im{G,,(z.;t)} , (3.2)

where the two complex variables z, and z, are given by

zI = 171 + ia1r72, i zo = 171 + iasr72 ,

and i = v/T-i". For the bimaterial system, Fmk(zi; t) and Gmk(Zo; t) are analytic in the

upper half complex zik-, or zsk-planes for k = 1 (upper material), and analytic in the

lower half complex Zlk-, or z°k-planes for k = 2 (lower material). The complex conjugates

of these functions are also analytic on the plane obtained by reflection along the real axis,
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e.g. T•1(71; t) is an analytic function on the 71 plane. Since a, and a, are different for

each material, the scaled complex variables zi and z, will also be different. For fully

transient problems, in the analytic functions Fmk(zi; t) and Gk(z,: t), time t ,.r!pears as

a parameter. This suggests that these functions will depend on time t not orniv through

the complex variables, zt and z,, but also directly through time t itself.

The displacement and stress components associated with these 0 , and V,,, are given

by
u1  = Re F'(z;t) + a,G'(z;t)}

(3.3)
( in) f {a, F,'z (z;

U2 -m t) + G')(z,;t)
and

Cr =I p Re{ (I + 2a2 - a2) F,'"'(z; t) + 2a, G"(z,; t)}

a22 -PRe{(j + a•) Ff,(z, t) + 2Qa.G"m(z,, t )f (3.4)

(ri) = -plm f2ajFm(zj;t) + (1 + a2 ) G"(z';t)

where primes denote the derivative with respect to the corresponding complex arguments.

For any analytic function D?(z), define the following,

lim Q)(z)= Q+(-h)
172---+O

z = r71 + 172 •

lim (z) = f-( 7 0)772-*0-

For 7r, < 0 and 772 --+ 0+, the traction free condition on the upper crack face gives

{a(-) f- = =0
2 2  - { '=-2 o,

or, in terms of the comple. - displacement potentials F,,(zi; t) and G,,(z,; t),
{p(, +c) o F[w (7,;t)+ -(m,;t)J +2 c. [:�,G;t)+G(,I(,t; +)] }, =- 0 (71;

{2pal [rt+( ) ...- r.'-(T( ;t)] +(1 + a..) [G+(77•;•)- U'-(rn;t} =0 j (

For Y7 < 0 and 172 --+ 0-, the traction free condition on the lower crack face gives

2 2 2 1 2 f 2
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or
t - ~+ Cl{y (1 + a') [F." (91; t + 7;" (91; t)] + 2pa, [G"-(?i 0= 7"(b

o . (3.6)

{2pa, [Fm'-(ii;t) -T+ (771;t)] +I'(' +C.) [IG(7-(, '-•(9,x,)]} 0

The above equations, (3.5) and (3.6), hold for rh < 0.

Along the interface, or il > 0 and r7 = 0, the bonding conditions should be satisfied,

which implies that

U(M -0,(M I.2 = 0

2 ~~ (in nim~ > 0. 772 0.

{( )}, {4)-1}2 o, {4'f } (2 -{2} 0

or, in terms of Fm(zj; t) and Gm,(za; t), from traction continuity,

{p(I + a2) [F-+( (711+-i; t)J + 2pa. [G'$ (j•; t) + '-(t,;t)]} 1

- {p( + o:) [F.-(-,; t) + rm' (i,;t)] + 2psa. [[,G'(1;t) + '(iM+0•;•t)]} = 0

2p t[F1+ (171; t)- ':(71; t)] + '0(1 + a2)[If+(r, 0)1-(/;,) 01,

- {f2p, [F-(,.; t) - V÷(77,; t)] + #(I + a:) [Gt(.l t)- '+(71,; t)]j} = 0
(3.7)

and from displacement continuity,

- {[Fj-,;(t),)+TPZ(7,1;t)] + c. [G-(771;t)+ 7,(n,,i;t)]}2  0
(3.8)

- {cl [Fm-(71;,) 0O(•0,;)] + [Ga(i,;,t) -U. (,;,)]} 2 0 ]

The above equations, (3.7) and (3.8), hold for ill > 0.

For simplicity, define the following matrices for each material, k E {1, 2},

[ 2p= I + as k 211at -p(1 + a. k
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a1 ] V=[ -1  1:;]
Uk = ,1Vk1=

Also define the following complex vector for each material,

fm.(kz;t) = (Ft(z;t), Gm,,(z;t) )T

where z = r71 + i72. From above definitions, the boundary and bonding conditions,

equations (3.5), (3.6), (3.7), and (3.8), can be rewritten as

"+(= '

, Vr < 0, (3.9)
P2fj2(11 ; t) + Q 2f7mZ2(i; t) = o

and

+ Vr >0. (3.10)

Ulf 7(v71 ;t) + V1•,07(1 ; 0 - U2fm2 (11; t) - V 27,.+2 (7i;t) = o

Further, the bonding conditions in (3.10) can be rearranged as
'++ • (11 , " 1,

P 1 f (17, t) - Q 2y, 2 (7h; t) = P 2f-(, 1 ;t) - QfMl(i,;t)
I V rih > 0O . (3 .11)

Ulf+1(771;t) - V 2f,, 2(tlh;t) = U 2 f' 2(ih;t) - V, 17,j(rh;t) >

In the above equations (3.11), the left hand sides are the limiting values of functions

which are analytic in the upper half plane. The right hand sides are the limiting values

of functions which are analytic in the lower half plane. Since the limiting values are the

same along the positive real axis, the function P 2fM"2(Z; 0 - Ql z; t) defined in the

lower half plane, is the analytic continuation of the function Pf" 1 (z; ) - Q 2 m 2(z; t)

which is defined in the upper half plane, and vice versa. This results from the continuation

propertities of analytic functions. As a result, we can write

P1 f"1 (Z;t0 - Q27f,2(Z;) 0 #m(Z;i 0, z E S
, (3.12)

P 2 f" 2 (Z; t) - QlTm (Z; 1) = K"M(z; ), Z E S-

13



and
UiflI(Z; 0 V27' 2 ( (3.13)

U 2 f'm2 (Z;t) - V 7 '•,(Z; t) 8o .(z;t) , z E S -

where
w e es *i = (771, M 2) 0 -o < 171 < C) , 72 0 o C

{(771, i772)1 00 < 711< 00,72 <0} -C

C = {(.9, i172) I - oo < 771• 0, 772 = o

s,,(z; t) and 0,•(z; t) are analytic functions throughout the z-plane except along the cut

C which is the entire non-positive real axis. From the above equations, it can be seen

immediately that equations (3.10) are satisfied identically. So, the question now is to find

the analytic functions rm,(z; t) and m,(z; t) in the cut-plane S+ U S-.

Solving for f"k(z;t) and 7k(Z; t) from equations (3.12) and (3.13), we get

f" 1 (z; t) = P-'H-' 0' (z; t)- i 2 r.,(z; týr E ,(.4ml% I, m z E S+ ,(3.14)

7. 2 (z;t) 0=Q --'H-1 {f-(z;t) - Lim, (z;t)}

and
S,,,eK(z1)} , z - .ES (3.15)

Y,.,(z;t) -Q-1 1 {H'(z;t)- L 2#Cm(z;t)}

The definitions of matrices Lk, Lk, H, and '/, as well as the properties of these matrices

are given in Appendix 1. Matrices Pk and Qk have been defined above. In obtaining

(3.14) and (3.15), we have assumed that the inverse matrices Pk' and Q7' exist. Notice

that the determinants of Pk and QA, are both equal to Dk(v), where

Dk(V) = {,4oI. - (1 + a .

Therefore, in this analysis, we exclude the situation where the interfacial crack propagates

with either of the two Rayleigh wave speeds of the bimaterial system which are the real

roots of Dk(v) = 0. This ensures the existence of Pk' and QV.
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Substituting equations (3.14) and (3.15) into the traction free conditions on the crack

faces, (3.9), we get

fOH i7~) i 2 tc+(m;t)} -H{O'-(r7;t) - L2K-(7h;t)}I =0
, Vr7a < 0. (3.16)

H OeM(0i;t 0- 1 ACM0;(it) 0 h- f of+ (i~1; t) - LI +(j?,i; t)}I =

Adding the two equations in (3.16), and using the fact that H H j o for a crack

propagating with a nonzero speed, we obtain

Oh(n; 0 - ,X(,1;t0 = 0. V71 <0. (3.17)

This implies that Km(z; t) is continuous across the cut except at the crack-tip and there-

fore ocm(z; t) is analytic in the entire complex plane except at z = 0. However, the con-

dition of bounded displacement requires that I om(z; t) I = 0 ( jzl* ) for some a > -1,

as jzi -- 0, so that any singularity of .,,K(z; t) at the crack-tip is removable. Therefore,

0CM(z; t) is an entire function. Now, both equations in (3.16) become

H-/0'(qh;t)- HO',(771 ;t) = RX,,(7h;) , V771 < 0, (3.18)

where

R =HL2 -HL 2 =H L,- H Ji
Equation (3.18) constitutes a Riemann-Hilbert problem. Its solution 0' (z; t) is ana-

lytic in the cut-plane S+ U S-. Along the cut, 0'(z; t) satisfies equation (3.18) for some

arbitrary entire function ,cm(z; t). Also, from the requirement of bounded displacements

at the crack-tip, as Izi --+ 0,

I ',(z; t) I=- 0 ( IzI), (3.19)

for some a > -1.
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In equation (3.18), the solution O'(z; t) is composed of two parts, the homogeneous
0'

solution 0. (z; t), and the particular solution 0rn(z; t). We will consider these two solu-

tions separately.

HOMOGENEOUS SOLUTION:

The homogeneous solution is obtained by solving

01+-
HrOn,+ (771; t) - H 0. (771; t) = 0o, V 77i < 0 . (3.20)

By using the solution given in Appendix II and by imposing restriction (3.19), we can

write the solution to the above equation as follows:

0'm (z;t) = z-2+1( Am (z;t)C+ Z- B (z;) , (3.21)

where

f: 1 ' In 1 + 0 h '

2?r i+1 IV2 1

-- _ T__ 1 7

and Am (z; t), B,,, (z; t) are arbitrary entire functions. The parameters f and r defined

here are known functions of crack-tip speed, v, and material properties. Their functional

dependence on these variables is discussed in Appendix I and section 5. For v = 0, c(v)

reduces to co which is the oscillatory index that appears in the quasi-static interfacial

crack problems (WILLIAMS, 1959; RICE, 1988).

By substituting equation (3.21) into equations (3.14) and (3.15), we get

fin (z; t) = P 1H- 1 jz-+" Am (z: t)c + z Bm (z; t)2 1 , z ES+, (3.22)

fm 2(z; t) = Q'H-f z-+2 A. (z; t)C + z--2 B( (z;30
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and

f.m (z; t) = p-, j z-2+' Am (z; t)C + Z- -" Bm (z;t

zE, S- (3.23)

fmI(Z;t) = Q z-+ Am (z; t)C + z--2 Bm (z;t)

Notice that the following identities hold,

H1'h h2 -(I1- Od)C, H-' v"=h 1, (1 +hh),- =h12h2 I- ( - h12h2I

-1 .h-2h2 .S -1* T 2

and

l+fi-h -l
cos-h cr ' cosh f r

Without losing generality, we may absorb the factor Vhm/I 1 (hil - h12h21 ) into the entire

functions, Am (z; t) and Bm, (z; t). By taking the conjugate of the function fI (z; t) in

equation (3.23) and comparing it with th• function fro (z; t) in equation (3.22), and also

by using the properties of matrices PI and Qk, we can obtain a relationship between the
0 o

entire functions Am (z; t) and Bm (z; t) as follows,

a 7

Bm (z; t) =-Am(z; t)

Meanwhile, by using the fact that

we can get the solutions,

fl ,1 (z;t) { = r z-+i Am (z;t) + cosh.,r z--'nAm(z;it) z E S +

fm2 ( = -1A (-it)e+ cosh /" "t z)f,-12 (Z; 0 = --- h'- Z--Iz-+ic A. (Z; ') + co'sh --T Z-2 Am (Z; 01ES

(3.24)
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or, in terms of Fm(zi; t) and G,(z,; t), for ihe material above the interface,

Off [(1 + a.) - 2ja,] ecr"
Fm(zi;t) 0 - pD(v) cosh cr Z A (zj;t)

[(1 + a!) + 217a.] e-C• -

pD(v) cosh eir A.(zit)
(3.25)

" n [2a, - ,7(1 + ))] ef'i I+ifG.. (z.; t) =- 2 Am (z.; t)mt D(v) cosh A(r

+ [2cr + i,(1 + a,2)] e-f" -. -.,i"
+ uD(v) cosh c~r Z Am(zs;t)

For the material below the interface, the solution is also given by equation (3.25) with

the parameter cir changed to -cir.

PARTICULAR SOLUTION:

Since fcm(z;t) is an entire function, the particular solution 9'(z;t) can be easily

constructed. Suppose 61(z; t) is also an entire function, which implies that

o.(=1;t) o=(,01;t) = (,7;t),

then from equation (3.18), we get

6M(71;t) = {i-H Re..(?h;t), V i7 < 0. (3.26)

By using the identity theorem for analytical functions, it can be shown that for any z,

(Z;= 0 {•-H Ric, (z;t) . (3.27)

By substituting this particular solution into equations (3.14) and (3.15), we have

f,(z; t) = P 1 {H -H L2 - L } 1Km,(z; t)
, z E S+, (3.28)

f,.2(z; t) = Q•1 H -H} {fi L-Li Ki,(z; t)

18



and

fm 2 (zt)0 = P2-' fjH -HJ ~ jL1 L1 K(z; t) I z E S.- (3.29)
frni(z;e) = -Qj-' { -H} {L -L} m )

Notice that

(121 ).k 0

{ -H {lk -Lk} (112)j k E
h12

If the entire function Km(z; t) is expressed as

cm,(z,;t) = (,:c•(z;t), ,c$,•(z;t) )T,

then, it can be shown that by comparing the conjugate of fmi(z; t) in equation (3.29)

with Kl(z; t) in equation (3.28), we have

i(t+ (z;t) =o , ,p(2)(Z;t) _r 2)(Z;t) 0.
,C0(z; 0) + M, -

Define a new entire function Am(z; t) by

A, (Z;) 0 {[Iic('(Z;t) 10)(Z; t)] +I i~(~)I$)ztI

Also let

W (
121)k 

(l12)k) 
T

wk= hul ' h12)

By relating ocm(z; t) to Am,,(z; t), and by using the above definition, equations (3.28) and

(3.29) give

Y'n,(Z;) 0= P 1 w-.2A,,(z;t)- Q'w•A•(z;), z ES+
(3.30)

"2(Z;t)= P-'w,A,m(z;t)-Q'wiAm(z;t) , z E S-
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In order to express the particular solution in terms of Fm(zi; t) and Gm(z.; t), we need

to define two parameters, wI and w, that only depend on the crack-tip speed,

{f at(1 - a2) ' a'(1 - a2)

= pD(v) - " 1  - D(v)Ifa,(1-a,2) (h)5 -= a3(1 -ax) "~

1 1 D(V) 2  pD (v) 1,

Then, for the material above the interface, the particular solution can be expressed as

P"(z.; =) 0 1 ((1+ a Am(zi; t)-7D-(v) T+ w, 1 + w,

1 +a 2c a, ~ i t)}1l+wi 1 +w°]+ ID +){() 1(3.31)
I; = 2c+ 1 + A,.,) (z;t)

6D(v) 1 +w 1 + L. 0

'1 + -+ A,,A(z. )

For the material below the interface, the particular solution is also given by equations

(3.31) with wI and w, changed to w71 and w-"', respectively.

By adding the expressions in equations (3.25) and (3.31), and by integrating with

respect to the corresponding arguments, the final solutions of F,,(zi; t) and G,.(z.; t) for

the material above the interface, for m = 0, 1, can be obtained as

1(1 + a!) - 2rao) e!" a+i,

F&,c (ozs ; tZ2 A)(zl;t)

(1+ a.2) + 2a1ew~
+DD(v) coshhErA

f 1 + a2- (z;t), 2a, 2_.___ +°B.•(zi; t) - + W +' 'R.(Z,;) 0zI
pD(v) \1+ Wj l+w1/ '\1+Wi 1+wo.j

(3.32)
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and

G[2a• - 7(1 + a')]e" 4 -
Gm(z.;t) = D zcohA,, A(z,; t)ptD(v) cosh cor

[2a, + i-(l + a2)) e` I-,
+ pD(v) cosh r 8 A,,,(z;)

1 2t 1 + a2Bm(za;t) 2al + BI+(z,;t)Z.+ pD(v) I+w, I + w. / (Z+i + +w/ Z,

(3.33)

where the entire functions, Am(z; t) and Bm.(z; t) are defined by

d 2  2 d 2  =
T,2 I{ZZ11+Am (Z; t)} Am~' (z; t) , {IBmz =) Am(,/;0

and they can only be determined by the far field conditions. The solutions for the two

displacement potentials, Om,(771, 772 , t) and Om,(771,1r2, t), will be given by equations (3.2).

Since Am(z; t) and Bn(z; t) are entire functions, they can be expanded into Taylor

series,
00 00

Ao(z; t) = • A"(t)z' , Bo(z; t) = EBo(o(t)z"
,=o= 1(3.34)

00 00A , (z; t) A I• A '(t)zn , B ~ ~ ) l ) t z

n---O n=-

As we have mentioned in the previous section, in the unscaled physical plane, (•, 2),

k,(6 , 62, t) and Ob,(6, 6 2t) should be ordered according to their contributions to the

near-tip deformation field. By imposing this property, i.e. equation (2.11), to the repre-

sentations of 0,0(7h,112, t) and 0b,.(Th, 772,t), for m = 0 and 1, we can obtain restrictions

on the entire functions A,(z; t) and B,,,(z; t). In the Taylor expansion (3.34), A4,)(t) g 0

and B(0)(t) 9 0, but A(°)(t) = 0. In other words, the leading terms of 00 and k00 are

of order z3/2, whereas the leading terms of 01 and 0b1 are of order z2 . Meanwhile, it

can be shown that the coefficient of the leading term, A(o)(t), in (3.32) and (3.33), is

directly related to the complex dynamic stress intensity factor Kd(t) defined by YANG et
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al. (1991) through the relation

A• 0)(t) I K d(t) (3.35)

As a matter of fact, in the unscaled plane, (W1,•2), and for m = 0, equations (3.32)

and (3.33) are identical in spatial structure to the complete solution for the steady state

propagating interfacial crack in a bimaterial. By using an entirely different methodologies,

the most singular solution of the steady state problem was obtained by YANG et al.

(1991) and the complete solution of the steady state problem was given by DENG (1992).

However, in the present analysis the functions An)(t) and B(')(t) are allowed to be

functions of time.

3.2 Solutions for em(iii7q2,,t) and 0,m(771,772, t) for m = 2

For m = 2, the equations of motion (2.12) are coupled. They take the form,

42,"1 (1172, t) + -- )2'22 (1 '7/2, t) = a,/---•ReIV1/2Fr(.";t)'

1 (3.36)
2v I/ rn1 12 ' z;t ,

'P2111 (771,772, t) + -02'027M2('7i7112,t 0v15J, (.6

where Fo(zi; t) and Go(z,; t) correspond to the solution of (2.12) for m = 0 and are given

by equations (3.32) and (3.33).

In order to obtain the next most singular term in 0(771, 712, t) and ,,2(711, '12, t), we

should only consider the most singular terms in Fo(z,; t) and Go(z,; t). Therefore, for the

material above the interface,

Fo(zj; t) = ao(t)Ao(t)zl 2 +
, (3.37)

Go(z.; t) = co(t)Ao(t)z 2 + do(t)Ao(t)z' }
where Ao(t) = A4°)(t), given in (3.35), and

((1 + a2) - 217ao] e"

oD(v)coshvr
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60(t) = [(1 + a,) + 277aj e-"
pD(v) cosh fir

cO(t) -[2l,-v7(I +7•()l -I
t)D(v) cosh•" r

do(t) [2a, + i?(1 + )I
d)D(v) cosh cir

For the material below the interface, we need to change the parametei eir to -cir.

Substituting (3.37) into (3.36) and carrying out the differentiation with respect to

time, (3.36) becomes

0&,n (711, 72 , t) + 10,22 (71,172, t) -cr1

2-V-YRe jiivr [Ao(t)ao(t)z•• - o(t)bo(t)z"' ] z12 In z,
Cr1 Ci

+ (' [Bo(t)ao(t)z)' + Bo(t)bo(t)z3

2at

+ [I (,vAi(t)ao(t)) +BOýibo(t)I z~~}dt + otb÷ 1

and

0'2,1 (iOi, 72 ,t) + 1a02,22 (73,72, 0

2 I iv [ro(t)co(i)z - Ao(t)do(t)z'"] z2 In z,

a~qit

[Bo(t)co(t)z.' + Bo(t)do(t)z"] z. '27 (3.39)
2a,

vAO~V/icr*B&(t)O(t]
+ + Vv

+[ (v ~t)d.)) + Vv B (t)do(t)] }
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where

A0o(t) = (2+ tf)Ao(t) , bo(t) = (2 + i) (2 + ?f)AOMt

The most general solutions to equations (3.38) and (3.39) are

(1, , 172, t) = Re { F2 (z,; t) _ TP(zI; t) - *FP(Z,; t)} (J (3.40)
02071, r l2, t) =IM {G 2 (z,;t) -01G(z 1 ;t) - G(z3 ;t)}

where
F(z; t) = Djjao(t))z21"+ D+Tbo(t)}z2-"

+ j {K(t)ao(t)zI+" + Ki(t)bo(t)z"-"} In

G(z; t) = Dco(t)lz'2 + DT.do(t)lza-"

+ E {IK(t)co(t)z•+" +-R,(t)do(t)z'-"} linz

and
F(z; t) = BA(t)ao(t)z'•- + Bi(t)b0 (t)z"-4 I
G(z; t) = B.(t)co(t)z2+" + -B(t)do(t)z" 2

The two operators DA{-} and D.{.} are given by

Dl,, f{p(t)} = +/ ig -Ivp(t) + ic) Ao)(t)i
ý,2Ij"c2 2 dt \2 /

+ v'12& (I(+ ,E) Ao(t) + Z ivl 2p(t)Ao(t)

where p(t) is a real function of time t. Also
V61"o(! + i.E) A.(t)}

B 1,.(i) 8 8

ivAo(t)
2( 2C.,2.

In (3.40), F(zi;t), F(zt;t), G(z.;t), and G(z.;t) are totally determined by Fo(z1 ;t) and

GO(z,; t), given in equation (3.37). The coefficients of functions F(zi; t), F(z,; t), G(z,; t),

and (G(z,; t) are related to the crack-tip acceleration, the time derivative of Ao(t), as well
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as the crack-tip speed and Ao(t) themselves through the definitions of D,,,{Ao(t)}, B1,,(t),

and K(,.(t). It should be noted at this point that these definitions reduce to the equivalent

ones corresponding to the transient crack growth in homogeneous materials. Indeed, if e

is set to be zero, the expressions for Dj,.{Ao(t)} and Bl,,(t) that appear in FREUND and

ROSAKIS (1992) are obtained. Once again, it is clear that for the steady state situation,

functions F(zj; t), F(zj; t), G(z.; t), and G(z,; t) will vanish. The undetermined functions

F2 (zi; t) and G2 (z,; t) are analytic in the upper half plane for the material above the

interface, and in the lower half for the material below the interface. These functions

are at the moment unknown and will be determined below by using the boundary and

bonding conditions.

Associated with 02(71, 72, t) and 0 2 (07,172, t), the components of displacement will be

( = Re {FZI;i)+aG(z,; t)

[,Ft"(Z1; t) + Ejf'(zi; t) + F(z1 ; t) + 2-,F(zi; t),

zt) + EG'(Z; t) - G(z.; t) - 2.G(z.; t)]

(3.41)
(2) =Im 1atF2(z;t) + G'(z,; t)

- at [IPf'(Z:; t) + •,'(Z,; t) - P(Z,; t) - 2',eP(z,; t)]

and the components of stress

al pRef{(i +2 2a~- ) F'(zi; t) + 2a.43'2 (z;)

- (i + 2�a- _2) ,.(z,;t) + vP"(zi; t) + 2P(z,; t)

a2(02 a2 (3.42)

2[(1- a•& I - "at ] jF'(z.; t) + 2z,}'(zi; t)]

- 2a, [z,d"(z.; t) + T,,(z,; t) - 26(z,; t]
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(2) -- e{(i+ A~)F'ZI; t) + 2ca3 G"(z,; t)a22 -Pe2 2"

- ( a+.2) [ir"(z,; 0 + i,2 (zj; t) + 2P(z,; t)]

- [ - a . 2(Gi -- o• )l(P'j t) + zP'(z•,;p) (3.43)

- 2a, [zG"(z,;t) + z.d"(z,; t) - 2G(z,; t)]

and

d2) = -pIm {2*F2'(zi; t) + (I + a.2) G(z.; t)

- 2al zi-"(zj; t) + !EF"(zj; t) - 2F(zj, t)] (3.44)

-(I± +2. ITaG"(z.; t) + 72',&(z,; t) + 20(z.; t)]
- 2 - a2) (61('(z; t) + 2y.G'(z3 ; t)j

To produce a more compact form for the boundary and bonding conditions, one needs to

define the following quantities: First let Pk, Q4, •k, and V1 be obtained from matrices

Pk, Qk, Uk, and Vi, respectively, by changing the sign of the off-diagonal elements, and

let

Mk ,MV 0 Nk -- M 0
[P0rjn(v) r) ]k 0 Pnv -iin (v)Ik

where

) 2n 1 -a.

Also, define complex vectors,

fk(Z;t) = (F 2k(Z;t), G2k(Z;t) )T

fk,(z,;i) = ( F,,(z;t), Gk(z;t) )T,
fk(Z;;O = Pk(,Z;t), Ok(Z;t) )T.

Then, by using the above definitions, the traction free condition on the crack faces will
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be

P1 [If '1(77;t) - qI 1 (711;t) -]

-M+ (q,; t)+2rq,1+ (7;t)] - 2N I (ril;t) + 2 qf1 (7i;t)}

-2 P1 .t(,,; t)- 2 f, f 1(,,1; ) = 0
, 1r, < 0.

+Q2 [ (•t7,;t) -fl,.)2 0/;t)- q/ f2 (01i;

-2 K12 112 (il; t) + 27l Yf (771; t)] - 2N 2 tf 2 (r'l; t) + 2171 f2 (171; t)

-2 AP2 ;( 71;t)- 2Q2 f2 (171; t)= 0
(3.45)

The continuity of traction along the interface will reduce to

-M [l (11; t) _ 7, ?1 f+(1,1; t)} _ 2 1"+ (,71;t)

,V rh > 0,

+QI rfI ?1;0-11f -n;0- 7?1 (91 01

-2M, 1'i t) + 2%7i ('t)] - 2NI, [(ri; t) + 2'71f ('71; t)]
+2 P,2 (71; t) - 2 i41 (71; t)-

P2[f2" (-1;t) -7-71[r 12- 11
-2M 2 [12 (ix; t) + 2171 2 (171;t)2 ' (i/l; t) + 21 f 2 (171;t0j

-2 2 f 2"(ri,; t)- 2Q2 f2+(11;t)} 0

(3.46)
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and the continuity of the displacement along the interface will be

+V. r7: (i,; t')- ,71,f (1h; 0)- ,77?17 (h; 0)]

- 1 ~(i~) 27lf~h~t] V [f(h1; t) + 27,f (j?; t)]},h 0
& I q, t.+,+) + 217,.++(,,l; t)] -ir, [• •,,f) I- I:+ ++

,VY/1 >0.

- {U-0-_t - 2 "1 - 1 7

+ v 2  [ ( 7;+ 7 1 -; (0 -; t ) f 2- 1 f 2 I

- U2 [. 2 ?;t)+2 fJ;(T,,;t)lj- ,2 [,2 (i,,;t)+2iii"" ("m;t)] =o

(3.47)

Similar to the procedure in the previous section, by rearranging the bonding condition

(3.46) and (3.47), we may introduce two new functions .(z; t) and O(z; t), which are

analytic in the cut-plane S+ U S-. In order to keep our notation short, we define some

new quantities,

gk(z;t) 0 f(z;t) - z4(z;t) - z y+(z;) }.
2P-'Mk [f2(z;t)+ 2zfk(z;t)] - 2P-1k,(;

Therefore, we can write that
K(z;t) = Plfg1(z;t) - Q 2 g2 (z;t)

_z E S+, (3.48)

0'(z;t)= Uig,(z; t) - V 2j' 2(z; t) + q,(z;t) - q2(z; t)

and

M(z;t) = P 2g 2(z;;) - Qj 1(z;t)
7 z E S-, (3.49)

9'(z;t) = u 2 g2(z; t) - v~�(z; t) +q(z;t) -q2(z;t)

where

qw(z; t) 2 (LkMk - 1) [1'(z; t) + 2zrk(z; t)] + 2 (L+ kP - &k) ?kZ; 10
jk (z;t) = 2 (k Nk - J f'(z;t) + 2z!'(z; 1)] + 2 (LQk - Vk) f (z; )

(3.50)
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and

I= 0 1 0 -1

Vector *k (z; t) is related to vector qk(z;;t) by

qk (Z; t) = ( q9k(')Z; t), -q(')(z; t) ), qk (z; t) = (, qQ(Z; t), qg/(,(Z; t)T

This notation will be used throughout the paper to signify this operation. In calculating

qi (z; t) and q(z; t) in equation (3.50), we have used the fact that

P;'Mk = Q ,'Nk P;' Pk= Q- 1 , k E {1,2}.

By solving equations (3.48) and (3.49) for gk(z; 0) and Vk(z; t), we obtain

g1(z; ~ t)floH 1 {'(Z; t)- i 2 KC(Z; t) -[qi(z; 0) - q(Z; 0)]

~~2 (z2 t)= O'{'(z; t) - L, r(z; t) -[qi(z; t) - 2 (Z; J01S1 3.1

and

92(Z; t) = -P 4 2- 0A'(z; t)- i .z;t) - [q2 (Z; 0 q(Z 0)]
Li~~~~~ Ecz )- (z , S. (3.52)

3F1 (z;t) = -Qj1 fr-' {e'(z;t) - L2r-(z;t) - [q2('Z;t) - i1(z;t)]j

It can be seen that the above equations are very similar to equations (3.14) and (3.15)

with the exception of terms q1 (z;t) - 2 (z; t) and q2(z;t) - 1(z; t), which are totally

determined by the solution for m = 0.

By substituting equations (3.51) and (3.52) into the boundary condition (3.45), one

can show that sc(z; t) is an entire function. As a result, the boundary condition (3.45)

will reduce to

/0" '+(i/l; t) - HO'- (itl; t) = Ric(i71; t) + k(il; t) , V 17, < 0, (3.53)

where
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Equation (3.53) also represents a Riemann-Hilbert problem for 0'(z; t). It requires

that 8'(z;t) is analytic in the cut-plane S+ U S-, and along the cut satisfies the above

equation. By using the properties of our asymptotic expansion, equations (2.9) - (2.11),

it can be shown that 0'(z; t) should vary as,

I O'(z;t) I= 0 ( Izl), as IzI -* O, (3.54)

for some a > 0. The complete solution of (3.53) is generated by splitting the problem to

the following two parts.

o,
To obtain the first part, let 0 (z; t) be an analytic function in the cut-plane S+ U S-,

such that

He (,7i; t) - H 0 (rj?; t) = Rrc(i1 ; t), Vi/ <0. (3.55)

This is exactly the same as equation (3.18). One basic difference, however, is that unlike
o'

the previous case, here 6 (z;t) has to satisfy (3.54) (recall that before, a > -1). As a

result of this observation, in the material above the interface, the solution for o i) is

given by

00) [(1 + a,.) - 271a.] C- 0+
g, (z;t) - D(v) coshc Z2 A2 (z;t)

[(i + a,2) + 217a'] e-z, z
pD(v) cosheir Z A2(z;t) (3.56)

1 1--I+-a 2ca, *( 1 - 2_a,
MD(v) +W- ) B 2 (Z; t) -+1  + i+w') B 2 (z;t)}z

and

*(2) [2cki - ,l(1 + a, )]e z½+ z
g, (z; t)= pD(v) cosh eWr A (Z; 0

[2cm + ,j(1 + aNr)] e-" , (3.57)
+ iD(v) coshb cr

1 (2c 1 + ct o (2aj 1+cf.)-.------- -Ia 1+ B, (z;t)- - +-jB(z;t)z

"ýpD(v) 1 +wl 1 +w.) B2 +( 1 +w, /
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where
0 ( 0() o(2) T

S(z;t) = g, (z;t), g, (z;t))

and the entire functions A2 (z; t) and B2 (z; t) can only be determined by the far field

conditions. Similarly, the solution for 92 (z; t), in the material below the interface, can

be obtained by changing the corresponding parameters in equations (3.56) and (3.57).

The second part of the solution is obtained by letting

o'(z;t) = 0'(z;t)- 0 (z;t)

gk(Z; t) = 9k(Z; t)- 9k (Z; t)0

Then, i'(z; t) will be analytic in the cut-plane S+ U S-, and satisfy

if i'+(q,; t) - Hi'-(r1 ;t) = k(7r1 ;t) , V 71 < 0. (3.58)

Because the right hand side of equation (3.58), ik(i1; t) is totally determined by the

solutions 0o(21,,772, t) and 00(7 1, 772, t), 6'(z; t), and therefore, §k(z; t) are also completely

deternmined.

By using the results in Appendix II, we can write

6'(z; t) = / 1- Cr(7,.; t) + Ix L+(z.) C.7;t) .- zl 3-9
4'ri A2oo L,+(711) AlJ + (-i ', ~- Z'

where

L(z) = z2

The explicit dependence of qk(z; t) on z can be obtained from equation (3.50),

qk(z;t) = tk{ao(t),co(t)}Az2+i + •({b(t),do(t)}z½t-"

+ i (3 + 2if)(LkMk - I)kk{ao(t), co(t)}zi+iclnz , (3.60)

+ i (3 - 2it)(LkMk - I)-kki{bo(t),do(t)}z½-inlnz

31



where operators like tk{ao(t), co(t)} and kk{ao(t), co(t)}, etc., are given in Appendix 1.

From the definitions for ik (z; t) and the above, one can get

q1(z; t) - q2(z;t) = /3z2+" - " + - tZ2 in z
--- , (3.61)

q2(z;t) - j,(z;t) = -z2 - Oz- + i Cz+' In z - i Z;Z' In z

where quantities of 3, -y, 4, and c are also given in Appendix I. It should be noted here

that 03 and -y depend on the crack-tip speed and the complex parameter Ao(t), as well

as their time derivatives. However, 4 and c depend only on the crack-tip speed and the

complex parameter Ao(t). The right hand side of equation (3.58), &(ri; t), becomes

knrh;t) 0 wd(-r/1)½+ iln(-r 1 ) + i &dd(--71 )2-i'ln(--r1)

+--1 , Vr/ <0, (3.62)

where

Wd = i {eCi H + e"Hql}

Wt= i ft /3 + e"Hy} -i -ir~ if ec4

Once again, it can be seen that Wd does not depend on the time derivatives of the

complex parameter Ao(t) and the crack-tip speed, while wt depends on these quantities.

The functions inside the integrand of equation (3.59) can be rewritten as

k(?h;t) = -ie" { d+lIn(-,,,) + "'-(-'1i) ln(-?h)

+W, + ,t(-,1})-2}3
(3.63)

k(7 1;t) {c wd(-1,I) 2'i"ln(-,ih) + i W ln(-tl)

+Wt,(-V,)2ie + Wt}

In order to obtain the solution for 0'(z; t), we recast equation (3.59) into the form of a

Stieltjes transform by using (3.63). However, one can see that for our case, a closed form

evaluation of the Stieltjes transform integral is very difficult. At the beginning of this
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section, it has been mentioned that only the most singular terms in the solution of Fo(z; t)

and Go(z; t) are considered. This implies that we are only interested in the region where

zj -+ 0, i.e. very close to the interfacial crack-tip. As a result, instead of evaluating

the entire Stieltjes transform, we only need to study the asymptotic behavior of that

transform as fzj -- 0. The details of this asymptotic analysis are given in Appendix

III. If only the leading terms in the Stieltjes transform are retained, by using the results

provided in Appendix III, the solution for 0'(z; t) can be obtained as

9'(z; t) = i [Cdz+" _--dZ-II (lnz)2 + I -- • lnz

L~i T -i (3 .64)

+ [C •t+'2 - ±U. -;I + 0 ( IZ1 ) j
where in developing the above equation, the relation

e ir C We-•

A2  A1

has been used, and the following notations have been defined:

e-" fC ii

Cd = rWd

"Cr = es"2r)w, - += e Wd

+ \ sn 2)sinh(22r)

In constructing the entire solution for g,(z; t) and 9 2(z; t), the leading terms in (3.56)

and (3.57), are considered. This is consistent with the fact that (3.64) contains only
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leading terms of the same order. The final solutions for gl(z; t) and g 2 (z; t), are therefore

gl(z;t) = _ [PI1H-'CdZ 2 Q- H ZdZ2- (Inz)2

+ P1I ~-~~ zim -
1 k' -•~ ~~I

" L -) , z E S+, (3.65)

"+ [PI'H-' (C-- - 3) z Q 1 ) z

" cosh cr z 2 A2 (t) + e Z2 A2(t) + 0 (ZI

and

H di+ - Q-1H1Z.)2
g 2(z;t) =- P21 1H CdZ 2 - 21H-%'dZj2 (Inz)2

[p 1 i~-12 H (Ct - i -)z 2i - Q ;1 H -1 ( t - i ) Z 2 In z z-S-, (3.66)

2'H (Ctt - -y) z'++c- Q2 1H-' (. -M ,) , 3]

e+ p 2- A (t) +eC 2-t- + 0 -
+ cosh cz cosh CT Z t"2 (+0 ( Ize )

where A2 (t) = A2 (0; t).

Our final target is to find the complex potentials fk(z; t) = ( F2k(z; t), G2k(z; t) )T

After some manipulations, f"(z; t) and f'(z; t) can be expressed as
f'l( z; t) =+ { PiH-Az+ic - Q' 1- (In z)2

+ { 'H-1 (Ct - i• ) + i wdl{ao(t),co(t)}] z 2++

-- [1 f - (•t• -\ "•lb~),ot} z" inz

f t - -, f 
, z E S+, (3.67)

+{ [P-1H-1 (C(tt-- ) + wtn{ao(t),co(t)}] z2+''

- [Q -' (C,, -;) - , Utfba(t),do(t))] 2 L-}

firp -TI ,' 0 _e-+'€ - 1/• -

+ eohl Z+ A2 +1 t) e '-it' 0A2 (t) +A't(t)s+ " % z•2'A 2 (t) + 0 ( IzI )+coshera cosh c•r
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and
( -

A(z;t) H Cdz2 - Q2 'H-'dz2' (In

{ P2- H (C,-i 0 - i Wd2 {ao(t), c(t))] z2

-~~~ Z)1- ( + iZ Wd 2 {bO(t), dO(t)}j Z~ 2 In z
z E S-, (3.68)

- p2' H ( W-)- wt2 {ao(t),co(t)}j z2+i'

-[Q2'-1I. (~tt -. F) +Wt5 2 {b0(t),d0(t)1] Z.2 i

+ e-"Pjz½+ A2 (t) + ec.h. Z2 'CA 2(t) + 0 ( Iz )

where the operators Wdk(., -) and wik(', -) are given in Appendix I. By integrating the

above two expressions with respect to the complex argument z, we can finally obtain the

complex potential fk(z; t) = ( F2k(z; t), G2 k(z; 0 )T for both materials.

Since equations (3.67) and (3.68) are directly related to the stress components around

the interfacial crack-tip, some of the noteworthy features of the asymptotic field can be

studied through them. The most interesting feature is that there exist two terms in the

above equations, which are totally different in nature from the terms found in the solution

of a crack propagating transiently in a homogeneous material. The first of these terms

is that associated with z 1/ 2 (ln z) 2. This term is clearly associated with the interfacial

nature of crack growth since it is proportional to the quantity i. This quantity is also

related to the transient nature (existence of non-zero accelerations) of the problem. By

observing that
de dv
dv dt

One can easily see that i and thus the z1/2(ln z) 2 term vanish either when the crack-tip

speed is constant and/or when the material mismatch parameter f vanishes.

The se-cond term is that associated with z"' 2 In z. The coefficient of this term is related
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to the complex parameter Ao(t) and also depends on the crack-tip speed, as well as on

their time derivatives. So it depends on both b(t) and Kd(t). It can be seen that for

constant speed transient crack growth (3 = 0, A':_ $ 0), this term will still be present.

Indeed the r01 In r term has been observed by WILLIS (1973), who studied a particular

constant velocity, transient interfacial crack growth problem. Both of these two terms

which include logarithms will vanish at the same time only if the situation is strictly

steady state. Otherwise one or both will be present. These logarithmic sigularities are

the consequences of the existence of both the interface and the transient nature of the

propagating crack. For the case of crack growth in a homogeneous material (f = 0),

)3 = -y and 4 = ;, see Appendix I. This is true even if crack propagation is transient. As

a result, it can be shown that wd = wt = o, and consequently, Cd, C, and C,, will vanish.

The logarithmic terms also disappear. In this case, the transient field reduces to the one

obtained by LIu and ROSAKIS (1992) which does not feature any logarithms. It should be

stated at this point that transient higher order terms involving logarithmic singularitie.s

have also been observed in the solution of dislocation lines propagating transiently in

elastic solids (CALLIAS et al., 1990, and MARKENSCOFF and Ni, 1990). These terms

were shown to vanish when the dislocations propagated with constant speed.

In this section, we have provided a procedure which allows us to investigate higher

order transient effects systematically. By imposing the boundary and bonding conditions

on the complex potentials, the problem was recasted into the Riemann-Hilbert problem.

By solving the Riemann-Hilbert equations, and by evaluating the Stieltjes transforms,

the higher order terms were obtained. This procedure can be repeated to any order, and

we may therefore claim that it is constructive.
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4 The asymptotic elastodynamic field around a
non-uniformly propagating interfacial
crack-tip

For planar deformation of a homogeneous, isotropic, linearly elastic material, the ordered

array [u., ,uacr], a, 13 E {1,2', is said to be an elastodynamic state in the absence of

body force density, if the following conditions are satisfied

1o = - (u1°,0 ±u•, 0.)
2

ac,,o = 2pca)- + A I.Yb0 a, 0 E {1,2} , (4.1)

where p is the mass density and A, y are Lam6 constants of the material. In addition,

the field quantities uc, e•,, and aO must satisfy the sx.oothness requirements outlined

in WHEELER and STERNBERG (1968).

In the Cartesian coordinate system (•1,'•2), let Om(fl1, 2, t) and 0k(', 2,t) be solu-

tions of equations (2.12), m = 0, 1,2,.-., such that

€••,2, t) --_+0
0_____ I, I t22/--+0 M, m=0,1,2,..., (4.2)

¢•+.(,,•,t)¢=(, 2,t)-4 0

for any positive integer n. Thus, 0,(6i,C2,0 ) and O.(V1, 6, ) will be two asymptotic

sequences as r = (2 + C) 11 2 - 0. Defirle 06, 6, 0 and 0(61,6 2, t) by

= o00 

(4 .3 )

,O n

Then, the array [u,., -6,6 a0#1, a, El 1{1, 2), will constitute an asymptotic elastodynamic
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state as r = (C2 + C2)112 _. 0, if it satisfies

VD O4a +e0OMPO,
1

=,O = 2p +u•I,, , /E {1,2}) (4.4)

Now, consider a planar body composed of two homogeneous, isotropic, and linearly

elastic materials bonded along a straight interface. Let the two displacement potentials

for each material be given by (4.3), where each term of the asymptotic series is the

solution which has been discussed in the previous section. The asymptotic elastodynamic

state near the non-uniformly propagating interfacial crack-tip can then be obtained from

relations (4.4).

For its importance in the experimental investigation described in section 7, we only

provide the asymptotic expression of the first stress invariant around the interfacial crack-

tip. However, in order to shorten our expression, some notation needs to be defined first.

In the expressions below, the superscript (1) or (2) denotes the components of the vectors

defined in Appendix I and in previous sections. For the material above the interface, we

may define the following quantities,

[(I )h12J 2ca~hil '
fQd(t) = ý _vA A2 [(I+ a,2)hu + 2 cr i.' I + a +

d(t) -,,(v)A [(1 + c.2)h,, + 2a.h2,] T"' + [(1 + a.)h,2 + 2U0h,,1 (2)}

1 r + 1 '(1)

Qdt) = -,,D!,,)Ai) [(I + a:).u + 21 (j (t - 0))

- [(1 + a,)hi2 + 2ah 11 l ( ) I W)

1 + L, + 2a,h] @(t) ,(1 ))
ht (t) = pD(v),A* 2 lj' + I)h1 +-

+ [(1 + a',h12 + 2a.hn] (2 _ j ý42)) - c {bo(t),do(t)
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Qtti) pD(v)AjA2 { S +c~)hjj + 2a~h2 it ~:

-(1+ a)h2  + 1hi (CM? _ #6(2))} + W4~{Ot),ct)

6 t) M jitD(v)AIA2 {(1+ a.)i I 2ah 2 ](t:

[+l± a,2)h 12 + 2aahii () .())I - U(){bo(t),do(t)}

Now, one can show that by using equations (3.32) and (3.67), the first stress invariant in

the material above the interface will be given by

all + a2) Rej Ao (t)ao(t)z1 2 + Ao(t)bo(t)z, 2'

+ pDv)(l+ w.,) (Ai (t) + Ai(t)) + A2 (t)aOt)ZIL + A 2(t)bo(t)z?'

+ [Att(t)ZI2~ + Bt~~tf2 + Ctt(t) 2z(4.5)

+[At(t)z+I + Att~z~+c-i (ozK - hi (t)TlzJl~ In ZI

[Rdt)Z"+i- 6d~ (t)z?"i] (Inzd}+0(Ii)

where

2(1 + a2?) 3 ~ t}+~Kta(~
Att(i) = 11tt(t) - " I {(2 +i.E) Da{ftt) i K~~o~t - 2B1(t)ao(t),

AtM = hit(M++ 2 f (3 - "e) D,{N(M) + ' RK1(tAbWt + 2'Ri(t)bO(t)

3 -c 1 k /

Btt(t) = - (i+ if) (j + DiE) faD(i)} - 2W(l + iE_)Kl(i)ao(t)

2(1 + I( + i:Bi(t)ao(t)

bit (t) - -Z)(I - ie) Vif bo(t)} + 2i(I - icE),(t)bo(t)
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+1 -- 2t

+ -+ a) I(t)+ (t)2( a ( 32

1 -t) = -+ Ji •(t)ao(t),

Bt(t) = -( + iE ) (2 + i£) K,(t)ao(t) ,
Bt (t) = f (3 i) 2(1-1 i(1"+ it)b(t)a , t

2(1 + v K(t)

KA(t W = -itW _a

In expression (4.5), functions of time Ao (t), A1 (t), and A2 (t) are undetermined by

the asymptotic analysis. On the other hand, functions Ano(t), Bu(t), Cu(t), A4 (t), -,

are known in terms of Ao (t), the crack-tip acceleration ti(t), and the time derivative

of Ao (t). As a result, these functions are also undetermined by the asymptotic anal-

ysis. However, their dependence on time derivatives of v(t) and AI (t) constitutes the

mathematical demonstration of transient effects.

It is often convenient to express the first stress invariant in terms of real quantities.

For any complex function of time W(t), let its magnitude be denoted by IWI, and its

phase be denoted by 46(W). Meanwhile, a scaled polar coordinate system (ri, 01) centered

at the moving crack-tip is defined by

r={ + 0,2C2J"/2 01 = tan-1

The first stress invariant in the material above the interface can therefore be expressed
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as
all + 0'22  E(01 o~ nr) o(1 i~ nr)r /

2(a2 a2 I I Ao(t) ~o(l icsdr) 2 (~sncni}T

4a, 0

"+i E{>d(9I) cos(cInlrL)+ i2d (01) sin(c In rj)}Irj2(In r,)2

"+ {1t(0,) cos(E- In r,)+ j, (01) sin (f In ri)}r 1 /2 In r, (4.6)

+ {>tt(9i) cos(E In rl)+ itt (01) sin(f In ri)}I ri1/2

+ IA2 (t)j {E 2 (01) cos(c In rd+ L (01) sin(f- In rj)} Ir1/2

+ O(r,)
where

EO(9,) =a 0 (t)e-G j (~ Co 4~A0 )) + bo(t)e"9' cos + 1~A)

io (9i) =ao(t)e-GL sin -(Ao) bo(t)e'91 sin + ~Ao

E2(01) = aO(t)CCGI cos 2 4)A 2  + bo (t) e'e' Cos -

i2(01) - - ao(t)e-'alsin !-+4b(A*2)) bo(t)eceL si A

YEd(6,) = jf~d(t)e-'9 COS + O(fd)) - I hTd (t)Ie'OCOS +o O( h

i2d (01) = -!I-d~)I~ s + t( O ~ d)) + I hiZ (t) led sin + f(d

Et8)= lAt(t)le-'o Cos + 4t(At)) I At (Ole",' Cos (~+~A)

+ IB,(t)IC-'' cos L,- 1Z0(B1) - 1 Bf (t)IleGI Co

- 2 P{WdMtIC~o' sin 0 + -~ld I hd (t)jec" sin !'+ (hd)) }oi1
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it(01) - At(t)Ie-Gj Sin !-+ tA)+ At (t)je'91 sin ±~~~

+ Ip e(t)Ie-1 6' sin -DBt + bt (t)Iece1 s in - 4 B )

- V~ Id~ld-te' COS I~+ ltD)+ I (d (tOjet' COS + ' ) 01,
1. ( 2 ( 2

Ett(0,) = IAtt(t)16-eCOS11co + 4D(A,,)) - ~(t)jecGI COS L±(11)+

+ J~tt(t)je-'6 COS (TL" - 0(BG,)) -I Cu(Olt)e, COS30_ 0( b ti)-

{IjAt(t)e"Ie sn '- +2 /t t tot 0 +
-l Sin ± , + c~A 1)0

+ {IBt(i)Ie-' sin - 4(Bj)) I bt (t)le"9' sin L2-4b) 0

- {Ifd(t)IC-e 'aco +O 4(I~ d COS (t)"9 o + Ch~7d)) }012,2( )
tt(01) = - Vltd~le -. fl (i 2, + 4TO(At)) + I At (t)Iet', si !I k2 (f

"+ IBtt(t)I&-'6' sin L,- C t)+ I bt (t)je'6 si "-tbt

"+ Ic"MtIC-19' sin L' - lct)+ I Cu (t)IeeI1 sin 70

{IAt(t)Ie-`* cos (I +0~(A,)) + At (t)/Ieta' COS ( 2' + (At

-{B,(t)Ie-fe CO (MO -tB)+ bh (t)Iete CO 21

+ i 1 I1d(t)Ie", sin !-+ -bo)+ I h (tfle"' sin (!- + '04~)' o20~

I.(2 /( 2  /

The first term in equation (4.6) has a square root singuarity and oscillatory nature.

42



It is associated with the complex dynamic stress intensity factor Kd(t) (defined by YANG
0

et al., 1991) which is related to the complex coefficient Ao (t) by

K d(t) = -2v'fAo (t

The second term is the so-called T-stress term, and is independent of position. The first

two terms have the same spatial form as those obtained under steady state conditions by

DENG (1992). However, the remaining four terms, proportional to the square root of the

radial distance from the crack-tip, are more complicated and have some unusual features.

The part associated with I AO 2 Ol has the same form as that predicted by the steady state

solution and is of order r1/2. The term of order r'/2 (ln r)2 has a coefficient proportional

to i = e(v)i6(t). This term vanishes either when - 0 and/or c = 0. The remaining two

terms contain the functions E2-(01), j, (01), Et(Si), and -t- (01) which depend on the time

derivatives of the complex dynamic stress intensity factor and the crack-tip speed, i.e.

they depend on transient effects. These parts also vanish for steady state crack growth.

The term of order r1/2 In r was first observed by WILLIS (1973) who analyzed the stresses

in the case of constant speed, transient interfacial crack growth. In this case, 0 = 0,

k-d i 0, and the only surviving terms will be of order r112 In r and r1 /2 . If the two elastic

materials that constitute the bimaterial system become identical, the terms associated

with r1/2 (lnr)2 and rl/ 2 Ilnr will disappear. However, in this case, the functions Et2 (01)

and L (01) do not vanish and reduce to the ordinary transient term given by LIU and

ROSAKIS (1992) in studying the transient growth of a crack in homogeneous materials.

It is significant to note at this point that transient effects may noticeably change the r

and 0 structure of the field from that predicted by the steady state approximation (e.g.

existence of logarithmic r1/ 2 In r and r'/2(ln r)2 terms).
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5 Properties of the mismatch parameters in dy-
namic interfacial fracture

In the analysis of an interfacial crack dynamically propagating along the interface, there

are two mismatch parameters which depend not only on the properties of the materials

that constitute the bimaterial system, but also on the crack-tip velocity. The properties

of these parameters are very important since we have seen that the asymptotic represen-

tation of the crack-tip field is drastically changed due to their presence. One of these

parameters is defined by

S1 1 1 _I-Ir 1+- (5.1)

while the other one by
, Fhn (5.2)

V h122

In the above two definitions,

h = 2alca,- (I+ a2.) f2aick. - (1 + a2,)

= pD(v, 11 1 1uD(v) 1

(a.(1-aIa. ((-a2)
h12 = a, (5.3)

pD(v) 11 u j'D(v) }2

ha,(1Dav) + I at (I-ar)21DpD(v) 12

where

at= - I , Io 1- cv] 4a a

To illustrate the properties of the mismatch parameters, we choose a bimaterial system

composed of PMMA and AISI 4340 steel. We denote PMMA as material-i, and AISI

4340 steel as material-2. The mechanical properties for these two materials are listed in

the table below.
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Table: Properties of selected materials'

Parameter Ip(GPa) Iv Icl(rn/s)" cl(m/s)** c,(m/s) cR(m/s), p(kg/m)'
PMMA 1.20 0.35 2081.7 1761.5 1004.0 937.8 1190.0

AISI 4340 80.0 0.30 5978.8 5401.9 3195.8 2959.8 7F?3.0
"plane-strain -plane-stress

For both plane strain and plane stress, Figure 2 presents the variation of the parameter

17 with respect to the crack-tip speed. We can see that q] varies smoothly from 1.0 for the

stationary interfacial crack, to cc as the crack-tip speed approaches the shear wave speed

of PMMA (ci')). However, the situation is different for the parameter 3. In Figure 3, we

can observe that if the crack-tip velocity is less than the Rayleigh wave speed of PMMA

(c{•)), # varies smoothly and tends to -1 when the crack-tip speed is very close to cv).

Since D1 (v) will change sign as the crack-tip speed crosses c•}, 0 jumps from -1 to 1,

and then tends to co as the crack-tip speed tends to c,('. Figure 4 shows the variation

of fl when the crack-tip speed is bigger than c•). Figure 5 presents the behavior of the

parameter E when the crack-tip speed is below the Rayleigh wave speed of PMMA. It

shows that F tends to oo as the crack-tip speed is very close to c(). However, as the

crack-tip speed crosses the speed c(), since / is larger than 1, c will become complex,

and thus c can be written as

/•-1 (5.4)

Figure 6 gives the variation of the real part of E (i.e. ;) with repect to the crack-tip

speed when the interfacial crack is running at speeds between cR and c.0). We can see

that the real part of c changes from -oo to 0 when the crack-tip speed is in the range of() < <C'(1..

'the parameters for PMMA are from CYRO Industries, Woodcliff Lake, NJ 06675; the parameters
for AISI 4340 steel are from Aerospace Structural Metals Handbook, Battelle Columbus Laboratories,
Columbus, Ohio
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6 The asymptotic field of an interfacial crack prop-
agating at a speed between the lower Rayleigh
and shear wave speeds

In recent experimental investigations, described in section 7, bimaterial specimens com-

posed of PMMA and AISI 4340 steel have been tested dynamically. This bimaterial

combination exhibits a remarkable stiffness mismatch. It was observed that under im-

pact loading conditions, interfacial cracks may propagate at speeds exceeding cR , see

section 7. This experimental observation motivates our attempt to investigate dynamic

crack growth in interfaces at speeds exceeding the lower Rayleigh wave speed. In homo-

geneous materials, an infinite amount of energy has to be transmitted to the crack-tip to

maintain extension at the Rayleigh wave speed if the dynamic stress intensity factor is

non-zero (FREUND, 1990). This makes it impossible for a crack in a homogeneous solid

to exceed the Rayleigh wave speed of that material. However, for a crack growing along a

bimaterial interface, it has been shown that as the crack-tip speed approaches the lower

Rayleigh wave speed, say cR , only a finite amount of energy has to be transmitted to

the crack-tip if the dynamic stress intensity factor is non-zero (see YANG et al., 1991).

Accordingly, there is no energetic restriction for an interfacial crack to exceed the lower

Rayleigh wave speed. Indeed, the experimentally obtained velocity histories reported in

section 7, see Figure 14, are seen to largely exceed the Rayleigh wave speed of PMMA.

In the analysis of previous sections, the governing equations hold for crack-tip speeds

in the range 0 < v < 4,, if material-1 is more compliant than material-2. Also, the

development of the asymptotic stress field around the tip of a non-uniformly propagating

interfacial crack is dependent on the complete solution of the Riemann-Hilbert problem.

However, from the procedure provided in Appendix II, we can see that there are no

restrictions imposed on crack-tip speed from this procedure. The only consequence of the

restriction that the crack-tip speed is in the range of 0 < v < c(), is that all parameters
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appearing in the solution are real. Nevertheless, the mathematical approach is not limited

by this restriction, even if some of the parameters become complex. Therefore, we can

directly extend our solution to the case where the crack-tip speed exceeds the lower

Rayleigh wave speed.

Suppose the properties of the materials constituting the interface are such that c(') <

c(), and c() < v < C. ) As we have shown in the previous section, the parameter

77 remains real, but c becomes complex and is given by equation (5.4). If only the

leading term is considered, under the requirement of bounded displacement, or integrable

mechanical energy density (FREUND, 1990), the two complex displacement potentials in

equation (3.32) for the material above the interface, become

Fo(z,;) = - [(1 + a2) - 2,,,,] e z A )

(2 + i ;)(1 + i ;)pD(v) sinh r

+ 1(1+ cr)+ 2qa.] e ~~Z2'Ao(2 - i ;)(1 - i ;)pD(v) sinh r Ir

(6.1)

Go(z.;t) =2Q,- ,(1 + .)e z.2+tAo(t)
(2 + i ;)(1 + i ;)pD(v) sinh ; 7r

_ [2a,, +,9(1 N ,),: z,2-, Ao(t)

(2 - i ;)(1 - i ;)ptD(v) sinh ; r

for an arbitrary complex function Ao(t). To obtain this result, the definition of E in the

speed range c(? < v < c;), equation (5.4), has been used. For the material below the

interface, we need to change ; 7r to - ; 7r in the above expressions. By setting

Ao(t) = A(t)e1o(t)

the first invariant of stress for the material above the interface becomes

011 + (c,2- ot At f {21la, cosh [,* (7r - 1,)
U+ 2 = D(v) sinh ; r (6.2)

-(+acr2) sinh [Cir -0)]}co(4
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It can be observed that oscillations still exist along the radial direction. However, there

is no singularity at the propagating crack-tip.

At a position, r, ahead of the interfacial crack-tip, the traction on the interface can

be expressed as

770' 22(r; t) + i2'12(r; t) = -2jr"rAo(t) . (6.3)

At a position, r, behind the interfacial crack-tip, the crack face displacement difference

is found to be
.62(r; t) 217h12 r'+ic

61(r;t) --z - -Ao(t). (6.4)
r7 sinh ; 1 + i

If the interfacial crack extended an amount b, then the energy released by this extension,

AW(5) can be calculated by

AW(b) = I0 {a22(;t)b2(,-6;t)+a12(l;t)bl(b-l;t)}d•, . (6.5)

By using (6.3) and (6.4), we can express the above equation as

AW(b) = 2v72h12 jAo(t)12 1m { b - w)l+ý(6('.6)

sinh~ cj d0 5 + (66

Further, it can be shown that

(o6 - +1)id = Jo (6-'"
0 +1-i

Therefore, the energy release rate at the tip of an interfacial crack moving at speeds in

the range c(R) < v < c.1), g, will be

= -iim W = 0. (6.7)

This result may be anticipated since in this range of speeds, both stress and strain are

bounded. Equation (6.7) states that if the speed of the interfacial crack is in the range

cjR < V < c( I), no energy is needed to create new surfaces.
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7 Experimental evidence for the importance of
transient effects in the dynamic fracture of
bimaterials

To investigate the validity of the analysis presented in this work, a sequence of dynamic

impact experiments of bimaterial specimens has been performed. Stress waves generated

by impact, load an interfacial pre-crack, which subsequently propagates dynamically

along the bimaterial interface. High speed interferograms of the near-tip region of the

propagating crack are recorded. The optical method used is the newly developed method

of Coherent Gradient Sensing (CGS) (TiPPUR et al., 1991; ROSAKIS, 1993) described

below.

7.1 Experimental technique (transmission CGS)

Consider a planar wavefront normally incident on an optically and mechanically isotropic,

transparent plate of initial uniform thickness h and refractive index n. As shown in

Figure 7, the specimen occupies the (xI, x2 ) plane in the undeformed configuration. When

the specimen undergoes any kind of deformation (static or dynamic), the transmitted

wavefront can be expressed as S(x1 ,X2,x 3) = X3 + AS(X1 ,z 2) = constant, where AS is

the optical path change acquired during refraction. As discussed in detail by ROSAKIS

(1993), AS is related to the deformation state by the relation,

101/2 ,112

AS(xI,x 2) = 2h(n- 1) 023d(x3/h) + 2h 0 And(x 3/h) . (7.1)

The first term of equation (7.1) represents the net optical path difference due to the

plate thickness change caused by the strain component c33. The second term is due to

the stress induced change of refractive index of the material. This change in refrative

49



index An is given by the Maxwell relation,

An = D, (ai + Ux22 + a33) ,(7.2)

where D1 is the stress optic coefficient and aij are Cartesian components of the nominal

stress tensor. The above relation is strictly true for isotropic, linearly elastic solids. For

such solids, the strain component f33 can also be related to the stresses, and equation

(7.1) then becomes:

= 2hc, J/ (C{I + 0'22) - D 2 V('la-3 2) (x3/h) (7.3)

where

n- D1 +v(n- 1)
c., = D v(n - 1) D2 =E

E ' v(n - 1)D,
E

and E, V, and c, are the Young's modulus, Poisson's ratio and stress optical coefficient

of the materi d, respectively.

A schematic of the experimental apparatus is also shown in Figure 7. When the

transmitted wavefront emerges from the specimen after being distorted, it passes through

two high density gratings, G1 and G2 of pitch p, separated by a distance A. The gratings

have their rulings parallel to either the x, or x2 directions. The action of the gratings

is to displace (shear) the diffracted beam and recombined it with itself, thus creating

an interferogram after G2. The filtering lens L processes the light emerging from G2

and its frequency content (diffraction spots) is displayed on the back focal plane of L.

By physically blocking all diffraction orders except for either the ±1 orders, information

regarding the gradient components of AS(xI, X2) along either the x, or X2-axis is obtained

on the image plane. The camera is kept focused on the specimen plane. For grating rulings

perpendicular to the x,,-axis, the resulting fringe pattern is proportional to 8(AS)/axI,

aE f 1, 2).

A first order analysis described by TIPPUR et al. (1991), or a higher order Fourier
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optics analysis by LEE et al. (1993), have shown that the resulting fringes can be related

to gradients of AS(xl, x2 ) as follows:

O(AS) kop

- a E {1,2}, (7.4)

where { m for a=1, m= 0,-±1,±2,-

n for a=2, n=0,±1,±2,.

and m and n are the fringe orders for the xi, x2 gradient contours respectively.

Invariably a near-tip three-dimensional region will exist in any real specimen geometry.

However, outside this three-dimensional zone, a plane stress approximation will be valid.

A numerical study of each particular specimen configuration is needed to identify the

extent and exact location of such a plane stress region. Such a calculation has been

performed by LEE and ROSAKIS (1992) for a three point bend bimaterial specimen. A

rather large two-dimensional plane stress region was seen over a significant portion of the

specimen. In this region, cr3/v(a,, + 0'22) (a measure of three-dimensionality) tends to

zero•. For points ouside the three-dimensional region (aa7/v(ai, + o,2) -* 0), the optical

path difference in equation (7.3) will simplify to

AS(xI,x 2 ) c_ ch {I&I(x,,Z2 ) + &22(x,x 2 )} , (7.5)

where &11 and &22 are thickness averages of the stress components in the plate.

As a result, for points outside the near-tip three-dimensional region, the CGS patterns

assume a simple interpretation in terms of two-dimensional stress field app, imations.

In particular, equations (7.4) and (7.5) now indicate that fringes obtained from regions

surrounding the three-dimensional zone can be related to the in-plane gradients of &1 +&22

as follows:

aO(&11 + &22) 1 1mp 0(U1+ a22) = np (7h x = -- _ c, ch Ex - m, n = 0,=1±1,±2,-. -76)
49XI A ' 9 2

where in the case of t-ansmission c, is the stress optical coefficient of the material (e.g.

PMMA).
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7.2 Experimental set-up and procedure

Bimaterial specimens used in the dynamic experiments are of the three point or one

point bend configuration and are made from 9mm thickness sheets of commercially avail-

able poly-methylmethacrylate (PMMA) (material-I) and AISI 4340 steel (material-2).

The bonding procedure is outlined in TIPPUR and RoSAKIS (1990). A bond strength

calibration experiment was also performed in that study, demonstrating that the bond

toughness was at least as much as that of a homogeneous PMMA specimen. This fact

testifies to the strength of the bond and becomes important in the discussion of the

dynamic experiments presented bellow.

The bimaterial specimens have either a pre-cut edge notch, or a sharp pre-crack of

length 25mm along the interface. The specimens are either impact loaded in a drop

weight tower (Dynatup-8100A) or a high speed gas gun. After the impact event, the

crack propagates dynamically along the interface. The transmission CGS technique in

conjunction with high speed photography is used to record dynamic fields around the

crack-tip (only on the PMMA side, of course). A rotating mirror high speed camera

(Cordin model 330A) is used. A Spectra-Physics Argon-ion pulse laser (model 166) is

used as the light source. By using short pulses of 30nsec duration, we are able to freeze

even the fastest of running cracks and thus produce a sharp interference pattern during

crack growth. The interframe time (controlled by the interval between pulses) is typically

set at 1lsec for a total recording time of 80psec. The laser pulsing is triggered by a strain

gauge on the specimen that senses the impact.

True symmetric one or three point bend loading cannot be achieved since it is ex-

tremely difficult to apply the impact load exactly on the interface, which is very thin.

In addition since the wave speeds of PMMA and steel are vastly different, the loading

history at the crack-tip would be completely different if the specimen were impacted on
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the PMMA or the steel side. Thus it was chosen to impact the specimen a small distance

(7mm) into the steel side of the bond.

A sequence of high speed interferograms from a PMMA/steel test is shown in Figure 8.

This is a three point bend test conducted in a drop weight tower. The impact speed was

4m/sec. When the crack initiates (t = Opsec), intense stress waves emanate from the

crack-tip. These waves are visible in Figure 8 as discrete kinks in otherwise smooth fringes

and as circular lines centered at points along the crack line (see frames at t = 16.5psec

and t = 23pusec). This observation is a reliable oign of a highly dynamic event, as will be

discussed later.

7.3 Analysis of experimental data

In subsequent sections we shall present an analysis of CGS interferograms of dynamic

bimaterial specimens first using a Kd-dominant assumption and then using the higher

order transient field described in section 4.

7.3.1 Singular field (Kd-dominance)

The governing relations for CGS (7.6) can be used to estimate fracture parameters from

points outside the three-dimensional zone of a given interferogram. One could expect

that the plane stress region surrounding the near-tip three-dimensional region would be

well described by the most singular term in the asymptotic expansion for stress, i.e. that

a KV-dominant region would exist somewhere around the crack-tip. This is something

to be verified though and should not be taken for granted, especially in regions relatively

far from the crack-tip or in experiments showing transient effects (e.g. rapidly changing

crack-tip speed). In such cases the deformation field around the crack-tip may be better

described by a higher order analysis.
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As was stated earlier (see section 4), for cracks propagating dynamically under steady

state conditions in bimaterial specimens, YANG et al. (1991) and the first part of the

present analysis observed that near the crack-tip the stress field assumes the form,

Or.= Re - &_1)(0(,v) + Im Pdis. o (0,v), (7.7)

where (r, 0) are polar coordinates of a coordinate system translating with the crack-tip at

speed v, and Kd is the complex dynamic stress intensity factor. The material mismatch

parameter e = f(v) is now a function of crack-tip speed and of the elastic moduli of the

materials of the bimaterial system. Analytical expressions for P)~ and & are given by

YANG et al. (1991).

By using equation (7.7) and after some algebraic manipulations, &11 + &22 can be

written as

A(t) (I 2 2re'('-61) Cos ( Ob(t) -cln r,)
&11 + &22 - A (I) + a. - -wa) c

vrr k2 (r)(7.8)

+ (1 + a, + 2,,,,) e((w0 1) cos + 4(t) + flnr)

where

2 _ 2)(t)t
A (al - d I(t)At) D(v) cosh(•r) 'd(t) = Kjd(t) + iKd(t) , O(t) = tan-' Kd(t)

and al., ri,., and 01,, have been defined in previous sections. The mismatch parameters

r7 and e are functions of crack-tip speed and of material properties. These functions are

given in section 5 and appear in Figures 2 and 5, respectively. Note that equation (7.8)

is the first part of equation (4.6) in section 4. The field quantity of interest in analyzing

the CGS patterns for material-i is cuha(Onu + &22)/9XI. By differentiating equation (7.8)
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with respect to x1 , we have

(h O9(&l + &22) _c__hr'_-3/2_e-___ -__

c~h Ox1  2-/27

x (+ - .)cos 2  - fl)

- (I + a + 217a,) cos (- + 4(t) + cln ri (79)

+2c (1 + a2 2qa,) e2(1e1o) sin 31- 4D()- e In ri)

-2c (I + a.2 + 2a)+ (t) + In r

where A(t) is as defined in equation (7.8) and 0 _< 0 < r.

From the above discussion it becomes obvious that extraction of parameters like Kd

is now possible provided that experimental data are gathered from a region near the

moving crack-tip characterized by the structure presented in equations (7.8) and (7.9).

In a laboratory specimen of finite size where transient effects may be important, the

field may not be Kd-dominant and the use of a higher order analysis may be necessary.

The necessity of a higher order analysis in the interpetation of optical data from crack

growth in homogeneous specimens was demonstrated by FREUND and RoSAKIS (1992)

and KRISHNASWAMY and ROSAKIS (1991). An equivalent analysis for a transiently

propagating interfacial crack has been provided in previous sections and its effect on

data interpretation is discussed in the next section.

7.3.2 Higher order transient analysis

In section 4, a higher order expansion for the trace of the stress tensor in plane stress

is shown in equation (4.6). By differentiating with respect to the x, coordinate, we

obtain a relation for the xl-gradient of bn + &22, which is relevant to the analysis of CGS
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interferograms,

2p(all + Cr2) 0 1 Ao(t)jII 01cos( in rj)+ lb(0,) sin( in ri)) r-3/

+ i I Id(0:) cos(c n rl)+ fid (01)sin(d- nTI)} r, 1 / 2 (ln r)2

+ {lt(0,) cos(fd nr,)+ fi, (0O)sin( n ri)}I rl 2 In r , (.0

+ Rtt1(01) cos(f In r,)+ JiItt (01) sin(c In ri)} ri 1/2

"+ IA 2(t)I { 112 (01) cos( In rI)+ 112 (01) sin (c nri)}I r,1 /1 2

"+ O(r,)

where

110(01) = ao(t)ec'Ol Cos - 4(Ao)) + bo(t)edt cos + 4b(Ao

fio (0,) = ao(t)e-"9 sin L"- lb(Ao)) bo(t)ec'o si o + 0 (Ao))

H12(01) = ao(t)e-9 ' cos !- e1(A2 )) + bo(t)e'eBlcos +4 ýA

-g (01 +2

MOO = ao(t)e -e-i -ýA bo(t)eel in W'D(A2'

(2 (2 0
Ild(Ol) = j~~~e"9 o '(d)- I d(tI1efe CO +0&

fld (01) = IQd(t)1e'" 9' sin !'- t(Qd)) + I 6d (Ole"" Si 0 + $(Qd))

rIg(O) = IAti)1e-"e Cos I- lb(At)) At (t)Ie"' Cos ( 2 -(t

+ Ipe(t)Ie-,9 Cos 51- ( bt) t (010e"' Cos(2 L)j

+ 2~ {IQ(t)I-cLsin (~I- - 4(Qd)) - I 6 (t)le"9' sin ( ~Q) ~
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fit (0i) = A1(t)ICe9'e si a 4P(A 1 ) + IAt(tfle6 , sin -

250 250,

+ IBt(i)Ie- 9'8 sin 501 0- 8 + I I3t (t)Ie"Ot si( 20 Wi))

- V {IQd(t)Ie-'8I Cos - 'h1.dJ) + I Qd ()ee" COS oil

llut(0t) = jAtt(t)Ie- 0'o Cos t( ~--IAtt()te Cos -~~)

(2A 1/9 (1, 2(1

+IJ~t(t)je` 9' Cos Li- 4p(Cu)) I bt (t)Ieto Cos 1\0, ~C)

+~ 2j~-- i ( 2j

+ {Ictd(t)Ie-~'G Cos Lt- I Qctt (t)Ieel Cos -9WI

Jl ~ At(t)1e- 8' si (!' - +tIA..)) (t) Iecol sin (2 -( a,)

+ IAu(t)IC'et sin (A~ -(Bit)) + I htt (t)Ie"8 I sin L - t)

+ ICtt(t)Ije-`L si 90 -Ct + I &()c'eu sin ( 2 /)

- ~( 2 +1 +

- 110t)Ie-e COS (!' ,)+IA 2l eel Co (!- +0.)Ia

0el0,

j~Idt)Ie si 2 O(Q2d) +IQ tIe b'"j k2 eelsinI) 2
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The functions of time Ao(t), .A2 (t), Aut(t), ., that appear in the above expressions, are

related to functions Ao(t), A2 (t), Ati(t), ..- , in equation (4.5) by

1 )Ao(t) = H i2(1) A A2(t)

Aot(t) = I + AIf ao(t) + A,@) + Btt(t) =

Auc(t) = (G -if) A t (t)+ At (t)+ B t(t)

Bit (t) = H + ifBt(t) + Bt(t) + 2Gtt~t)

(t) = (-I+ I)B, (t)+ B, (t) + 2 C(t)

bt( = H,.
At (t) = (I+ if) Att(t) + 2~ffl(t) + Bt(t)

related to IKdI and ( (or K2, K•) of the expression of YANG et al. (1991) (see equation

(7.9)). In fact the most singular term of equation (7.10) reduces to equation (7.9). Under

steady state conditions, equation (7.10) reduces to an expression with 4 terms which

are identical to the first 4 terms of the higher order steady state expression derived by

DENG (1992). The transient contributions to the expression for the gradient (7.9) are
Those that exbihit an r-l/2 (ln r T)2 and r,"1// In rj radial dependencet It is worth noting

that most of these transient terms are multiplied by the quantity •, the rate of change of

the ocsillatory index with time (i = c'(v)ý)). Thus, to a certain extent, i is a measure of
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transience of the propagating crack. If i = 0, most, but not all transient terms disappear.

Those that remain are those related to the rate of change of the complex stress intensity

factor. Note that it is possible for i to be small even if a large acceleration exists, but

C(v) is small. Conversely it is possible to have a large i corresponding to small i' but

large E'(v). It should be noted that e(v) tends to infinity as v tends to cR , see Figure 5.

Whether or not i can be used as a reliable measure of transience will be investigated in

the subsequent section.

It is clear at this point that analysis of the fringe patterns obtained from a dynamic

experiment can be made using either equation (7.9) or equaton (7.10). The choice of one

or the other depends on whether a region of Kd-dominance has been estalished somewhere

outside the near-tip three-dimensional zone. Use of either equation allows estimation of

the time variation of the relevant parameters. This is done by performing a least squares

fitting procedure to data points digitized from the CGS interferograms obtained during

an experiment. Of course the crack-tip speed v(t) is measured independently. There are

2 undetermined parameters in equation (7.9) and 28 undetermined constants in equation

(7.10).

7.4 Results and discussion

The velocity and acceleration histories corresponding to the sequence of photographs

in Figure 8 are shown in Figures 9(a) and 9(b). This is a test performed in a drop

weight tower under the relatively small impact speed of 4m/sec. Indeed the terminal

speed in this test seem to be about 90% of the Rayleigh wave speed of PMMA, cW , see

Figure 9(a). In contrast, previous experience with dynamic crack growth in homogeneous

PMMA specimens of the same configuration show a maximum speed of about 0.35cR).

Note also that in this particular bimaterial case there is a very large crack-tip acceleration

(approximately 10"g, where g is the acceleration of gravity) immediately after the crack
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initiates, see Figure 9(b). This would suggest that transient effects would be present close

to initiation (t = Opsec). As was mentioned earlier the rate of change of the oscillatory

index with time (i) may be considered a partial measure of transience. For the same

test as Figure 8, we have plotted c and i versus time in Figures 10(a) and 10(b). In

Figure 10(b), i exhibits a local maximum at about t = 10psec after initiation. It then

starts increasing again after 25psec. At short times after initiation, f'(v) is close to

zero although & is large (10'g). This accounts for the initially low values of L. In this

regime transient effects are demonstrated through large changes in the complex dynamic

stress intensity factor. As time increases the combinaton of '(v) and i? results in a local

maximum in i. At later times (t > 25psec) and as the crack-tip velocity approaches the

Rayleigh wave speed of PMMA, i increases again.

To demonstrate the need of a transient analysis in interpreting experimental data,

let us now attempt to analyze the frame of Figure 8 at t = 9.5psec. This corresponds

to a local maximum value of i in this particular test. By following the fitting proce-

dure described in section 7.3.2, we can obtain the coefficients of either equation (7.9) or

equation (7.10). The result of such a fit for the Kd-domiinant field (equation (7.9)) is

shown in Figure 1 1(a). The diamonds are digitized data points from the interferogram

at t = 9.5psec. The solid line is the contour of the quantity a(b&1 + b22)/8Ox calculated

numerically by using the results for KV from the fit generated by the same data points.

As can be clearly seen, equation (7.9) cannot represent the data to any reasonable extent.

The deformation field of this particular picture therefore is nowhere near Kd-dominant.

In fact the main feature which is that the fringes vertically approach the interface cannot

be captured at all by equation (7.9). The result of the fit of the transient higher order

field (equation (7.10)) derived earlier is shown in Figure 11(b). The data points are ex-

actly the same as before and the solid line is the result of the fit. Clearly the fit is very

good over a large area of the specimen. All features of the field are successfully captured

by equation (7.10). This shows that the Kd-dominant analysis cannot be used for cases
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where i is high.

To further investigate the effect of i on the interpretation of optical data, we chose to

analyze an interferogram corresponding to the minimum value of i within the duration

of the test. This occurs at t = 23psec. Figure 12(a) shows the result of the Kd-dominant

fit to the experimental data. As the crack-tip is approached, equation (7.9) seems to

adequately describe the experimental measurement. However, as the distance from the

crack-tip is increased, Kd-dominance is lost. Nevertheless, the lack of Kd-dominance in

Figure 12(a) (- 1.- OxIO2sec-1) is not as dramatic as in Figure 11(a) (i - 1.2x 104sec-').

Figure 12(b) shows the result of the fit of the transient higher order field to the same

experimental data as Figure 12(a). The fit is now much better over the whole range

of radii. The above observations show that in general a transient analysis of data is

necessary if fracture parameters such as Pd are to be obtained with confidence.

7.5 Transonic terminal speeds

The next cycle of experimentation involved bimaterial specimens loaded at higher loading

rates than in a drop weight tower. This was achieved by using a high speed gas gun. A

one point bend impact geometry was used. Again the issues of crack-tip loading history,

as dependent upon PMMA or steel side impact, arise. It was chosen to impact the

specimens on the steel side, to remain consistent with the drop weight tower tests. The

gas gun projectile was 50mm in diameter and the impact velocity was 20m/sec, thus

resulting in considerably larger near-tip loading rates than in the drop weight device. A

sequence of interferograms from such a test is shown in Figure 13. Its corresponding v(t),

v(t), e(t) and i(t) plots are shown in Figures 14(a), (b), and 15(a), (b). In general terms

the results are similar to those obtained from the drop weight tower experiments. A main

difference is that the speed and acceleration are much higher. In fact the crack-tip speed

seems to exceed the Rayleigh wave speed of PMMA after a relatively short time. In some
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cases (as in Figure 14) the velocity even exceeds the shear wave speed and approaches

the longitudinal wave speed of PMMA, thus entering the transonic speed range for the

PMMA side.

For a crack speed less than the Rayleigh wave speed, we can repeat a fitting procedure

exactly as before. For the frame at t = 81isec in Figure 13, the result of such fit is shown

in Figure 16. Here the white lines, obtained from plotting the field of equation (7.10)

using the values of the fitted parameters, are superposed on the actual picture (instead

of the digitized points as in Figures 11 and 12). The illustration is the same though, i.e.

that a transient field is necessary to describe a picture such as this which corresponds to

a high i and acceleration.

Unfortunately given the existing theoretical analyses, we do not have the tools to fit

any field to interferograms having a speed in the transonic range for PMMA (c.1) < v <

ci(1). These large speeds were observed in a number of tests involving one point bend

interfacial specimens containing sharp pre-cracks lying along the interface. When a spec-

imen containing a blunt starter notch was impacted, recorded crack-tip terminal speeds

were even higher; at some cases approaching the longitudinal wave speed of PMMA. Such

a velocity history is given in Figure 17. Here the maximum crack-tip speed is estimated to

be 0.9c(1). These observations are very interesting because to our knowledge no evidence

of transonic or supersonic crack propagation has ever been seen in homogeneous materi-

als even though a large number of the theoretical studies exist on the subject (FREUND,

1990). It is believed that transonic crack growth is possible in a bimaterial situation

because of an energy transfer mechanism from the stiffer to the softer material. It can be

seen in Figure 13 that the nature of the fringes changes, approximately around the time

at which the crack-tip speed exceeds the Rayleigh wave speed. A sequence corresponding

to the same test whose velocity is shown in Figure 17 (blunt starter notch) is presented

in Figure 18. In these pictures, we see an even more drastic change in the nature of the
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fringe patterns as the crack-tip speed exceeds both Rayleigh and shear wave speeds. To

see this effect clearly, compare the second frame in Figure 18 to the sixth frame. Finally,

additional visual proof of the existence of large transient effects is shown in Figure 19.

We are now in the process of developing an analysis for the propagation of an interfacial

crack at speeds exceeding c,(). It is hoped to be able to predict fringe patterns as those

observed in Figures 13, 18, and 19.

8 Conclusions

Experimental observations of high speed (transonic terminal speeds) and high accelera-

tion (10Sm/sec 2) crack growth in PMMA/steel interfaces are reported for the first time.

Motivated by these observations, a fully transient higher order asymptotic analysis of

dynamic interfacial crack growth is performed. This analysis is valid for crack-tip speed

in the range 0 < v < cO) (c,(') is the shear wave speed of PMMA). Explicit expressions

for stresses are provided. In addition to the classical r-1/2, ro, and r 1/2, .-- , terms of

steady state expansion for the stresses, new transient contributions of order r1/2 In r and

r 1 /2(ln r) 2 appear. The structure of the near-tip field obtained by the analysis is found

to describe well the experimentally obtained stress fields. For subsonic crack growth, the

experiments demonstrate the necessity of employing the fully transient expression in the

analysis of optical experimental data. Terminal speeds of up to 90% of the plane stress

dilatational wave speeds of PMMA are observed.
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Appendix

I: Definitions and properties of matrices used in section 3

Let Pk, Qk, Uk, and Vk be defined as in page 12, section 3, and Lk and ik be given

by

Lk = UkP' 1 , Lk= VkQk 1I

Matrices H and k are defined as,

H = Lj- i,2, H=L 1 -L 2 .

By algebraic calculations, it can be shown that for k E {1, 2},

Lk (lII~k (112)k 1 [ (l11)k -(12)k

where

(l11)k ={2al,k- (1 +a,2) } (11)k {,(I_ }2 (121)k ={p(v) } a!),uD(v) IA D~v pD v

and

D(v) =4aa, - (1 + ct,2) 2

Therefore, [hil h12 1i h12
H=

h 2 1 hl- h21 h 1 j

where

h11 1( 1 - (11)2 , h 12 = (112)1 + (112)2, h 21 = ('•2)1 + (12)02

Notice that

H i=k H = (h2 l - h1 2h 2I)I,

where I is the 2 x 2 identity matrix. Thus,
1 .- 11

1 H H =
hil - h 12 h 2I h'a - h 12 h21
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Also, it can be shown that

Lk Lk=LkL, k E{1,2}.

A sequence of operator definitions follows. These are related to the analysis in section

3.2. Let p(t) and q(t) be two real functions of time t and define the vector operators

dk{p(t),q(t)} = { D1tp(t)}, DK{q(t)} }T

kk{p(t),q(t)} = { KB(t)p(t), K,(t)q(t) }T

bjkfp(t),q(t)} = {BI(t)p(t), B.o(t)q(t) k}T

where operators D1, {.} and functions KI(,.(t) and Bj,,(t) have been defined in section 3.2.

With the above definitions,

tk{p(t),q(t)} = (3 + 2ic)(LkMk - I)dk{p(t),q(t)} + 2i(LkMk - I)kk{p(t),q(t)}

+ 2 [(1 + 2iN) (LkMk - I) + Lk Pk - Uk] bk{p(t), q(t)}

where Mk, Pk, and Uk have also been defined in section 3.2. In addition, for any given

operator

mk{p(t),q(t)} = { m( 1){p(t),q(t)}, m j2){p(t),q(t)} }T

the associated operato, ;nk {p(t), q(t)} is defined as

ink {p(t),q(t)} = { m(){p(t),q(t)}, -m(2){p(t),q(t)} }T

Also vectors 3, -y, •, and €, are defined as

P = t 1{ao(t),co(t)}- t2 {f4(t),do(t)}

"- = t 2{ao(t),co(t)}- ti {bfr(t),do(t)}

= (3 + 21) [(Li 1 - 1) ki ao(t), co(t)} - (i 2 M 2 - I) i2f {bO(t), da(t)]

=(3 + 2k#) [(L2&r2 - I) k2{ aO(t), co(t)} - (i1 Ml1 - 1) k, {Lb(t), do(t))]
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and operators wdk{p(t),q(t)} and wtkv{p(0),q(t)} as

wdk{p(t),q(t)} = 3 + if [2P•I k + + ) I] kk{p(t),q(t)}

wtk{p(t),q(t)) = (3+ if) [2Pk1Mk + + if) I] dk{p(tl,q(t)}

+ 2i [PI'Mk + (1 + ic)IJ kk{p(t),q(t)}

+ [2Pk1 P, +2(1 + 2i•)Pk•M., + f2) I] bk{p(t),q(t)}

II: Solution of the Riemann-Hilbert problem

Consider the problem formulated as following: Find a function

O(z) = (O](z), 02(z) )T

z = I + iZ72, which is analytic in the whole z-plane except along the branch cut -oc <

7,1 < 0, 772 = 0, and satisfies the equation,

iH 0+(11) - HO-(0 = KO, V ?h < , (1)

where H and H are 2 x 2 matrices, defined in Appendix I, and

,C(7/) = ( ,1d1'( ), IC2 (771 ) )T ,

with tel and r-2 are known functions of iY/. Near the origin, function O(z) should satisfy

the requirement that

I O(Z) I= o ( IzI ), as jzj -. 0, (2)

for some real number a, and generally, a > -1.

In order to obtain the solution to the above Riemann-Hilbert problem, the eigen-values

and eigen-vectors of H, and if need to be studied first. By solving the equation

det {H-A I} = 0, (3)
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where I is the identity matrix, the eigen-values for H are found to be

"-\,2 = hil ± V/h 7hi. (4)

The expressions of functions h1 j, h12, and h21 in our problem are dependent upon the

mechanical properties of the constituents of the bimaterial system and the speed of prop-

agation of the interfacial crack. hA1 , h 12 , and hAl ensure that the eigen-values, A] and A2,

are real, provided that the crack-tip speed is less than the lower Rayleigh wave speed of

the bimaterial. The corresponding eigen-vectors are

-(1, 2 )T (5)

where the parameter 77 is defined by

h121

It can be shown that the eigen-values for i are the same as those for H, which are given

in (4), while the corresponding eigen-vectors are

=( 1, 2:) )T (6)

Define the matrix B, by

and set

i#'= B- 1 il BB,

and

o (z) = B-'O(z), ic (91) =

Then, equation (1) becomes

n'o (ij) - H' 0 (1) ), V 17, < 0 (7)

72



or, in component form,

A2 01 (77)- A1 01 (711) =K (71) I V t 1 < 0. (8)
Al 02 (171) -- A2 02 (771) =K2 (771)

It can be seen from above analysis that H and H can be diagonalized simultaneously by

the same transformp "ion. Therefore, the originally coupled equations (1) can be reduced

to the uncoupled equations (8).

If we express the ratio A1 /.A2 as having the following dependence on 8:

A, - 1+03

A2  1 -J'

then the parameter # must be expressed as,

hil

As a result, the solution for the first equation in (8) can be obtained as

01 (z) if / (r)dr (

L(z) 2=ri C A2L+(r)(r - z)- A (z)

where A (z) is an arbitrary entire function. C is a contour along the entire branch cut,

and extends from negative infinity to the interfacial crack-tip. The function L(z) is given

by

L(z) = z-2+t (10)

where
1 I-n2i=•'r n1 +1"3'

and k, is an real integer. Integer k, is chosen so that

I L(z) I = 0 ( Izl), as Izl- 0,

which complies with the restriction of equation (2).
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Similarly, we can obtain that

02 (z) I f 2 (r)dr
-(z) - 2 -i C +Al-r- z)+ B (-), (11)

where B (z) is also an arbitrary entire function. L stands for the complex conjugate of

L.

Returning to the original function O(z),

e(z) = 4i{A L+(r)F (T)+ AlT+(T) ( -Z , (12)

+ L(z) A (z)C +-T(z) B(z) J
where

[1 1] 1]

F-= 177

and

C =(1 )T _=(1, )T

III: Some asymptotic results of the Stieltjes transform

In solving the Riemann-Hilbert problem, we need to evaluate the integral

-(z) f .(-7l)dil (13)
171 - z

Setting t = -ir, we get

I(z) f M dt. (14)
f.t +z

As we can see from equation (14), -1(z) is the Stieltjes transform of function f(t).

Here we want to study the asymptotic behavior of the Stieltjes transform as z -- 0.

Alternatively, we may set A = 1/z to get

I(z) = -AH[f; A] , (15)
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where

H[f; A] = [0 + (16)

Studying the asymptotic behavior of (14) as z --+ 0 is equivalent to studying the asymp-

totic behavior of (16) as A --+ oo.

Suppose that f(t) is locally integrable in (0, oo). Recall that the Mellin transform of

f(t) is defined by

M[f;sj = t'-lf(t)dt, (17)

and set
1

h(t)=
l+t

Then, by using the Parseval formula, we can obtain that

H[f; A] =+ioo A-'M[h; s]M[f; 1 - s]ds , (18)H~f;A] =2ri J,-ioo

where the constant r is such that Re(s) = r lies in the common strip of analyticity of the

Mellin transforms M[h; s] and M[f ; 1 - s].

After some manipulations, it can be shown that

M[h;.s] = -7 -r, (19)
sin 7rs

where M[h; s] is analytic in the strip 0 < Re(s) < 1. In analogy to the particular problem

of interfacial fracture that we are interested in, we will define the function f(t) as,

f(t) = t'" (In t)o , (20)

where a = ±2c, or 0, and 83 = 0, or 1. For this function, the Mellin transform M[f; s]

only exits in the generalized sense. Let

f(t), tE (0, 1] 0, tE(0, 11
fA(t) - ; (t) =

0, t E [1,oo) f(t), t E [1,oo)
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Then, we may write
,oof,(t)

f dt , j = 1, 2, (21)
1 + At

and

H[f;A] = L1 (A) + L 2(A) • (22)

Also let

Gj(s) = M[h; s]M[fi;1 - s] , j = 1, 2. (23)

Then,

G(s) = M[h; s]M[f; 1 - s] = GI(s) + G2 (s) .

In addition, from the Parseval formula,

L1(A) =+t J - A-'Gj(s)ds, j = 1, 2, (24)2j ) =

and

H[f; A] I= J , AGj(s)ds. (25)
j=l to

Using the specific function f(t) chosen in (20), it can be shown that

1 rGi(s)- [-( + ia)]0+1 sin rs (26)

In the above we can see that G, (s) is analytic in the strip 0 < Re(s) < 1. Since M[f 2; 1-s]

is analytic in the half plane Re(s) > 1, and M[h; s] can be analytically continued into the

entire s-plane as a meromorphic function, G2 (s) is a meromorphic function in the half

plane Re(s) > 1 with simple poles at s = 2,3,.--. Then in equation (24), we can always

choose that 0 < r, < 1 and r2 > rl. Observe that if s = s, + iS2 , GI(s) has the property

lim G 1(s 1 +is 2) = 0, r < s1 < r2 . (27)1821--.o

Therefore, we can apply Cauchy's integral theorem to equation (25), which results in

H1res f{-A+G(s)} + I A-'G(s)ds . (28)
ri <Pe(s)<r7
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For our case, it is easy to show that G(s) = 0. So finally, we get

H[f; A]= 1 res A- $ }r "
r2 <Re(s)<r2 - (1 + ia)]O+l sin 7rs

Letting r 2 --+ +oo, we get an infinite asymptotic series for H[f; A] as A- . oo.

By applying the above analysis to our particular problem, for a $ 0, we will obtain

following asymptotic results:

/•- dr i_ r 2 cosh ra zio 1o(_rh)*iln(-717 i z Iz-, lnz -7

0 oz sinh iro n sinh2 V - 2

+o( IzI)

(71 - Z d = _ z' 0T + - + O( I•I) as z 0. (30)

ln(-ri/)d - (Inz)2 + f (+ ( IZI)
171 -z- 2 "6"

J 1dil In z + O( Iz)
- z

77



Captions

Figure 1: Schematic of dynamic growth of a crack along a bimaterial interface.

Figure 2: Velocity dependence of mismatch parameter 77 for plane stress and plane

strain. (Bimaterial combination: PMMA/steel)

Figure 3: Velocity dependence of mismatch parameter /3 for plane stress and plane

strain. (Bimaterial combination: PMMA/steel)

Figure 4: Velocity dependence of mismatch parameter /3 for plane stress and plane

strain at the vicinity of the shear wave speed of PMMA. (Bimaterial combination:

PMMA/steel)

Figure 5: Velocity dependence of mismatch parameter c for plane stress and plane

strain. (Bimaterial combination: PMMA/steel)

Figure 6: Velocity dependence of the real part of mismatch pprameter c for plane stress

and plane strain at the vicinity of the shear wave speed of PMMA. (Bimaterial

combination: PMMA/steel)

Figure 7: Schematic of the optical set-up for CGS in transmission.

Figure 8: Selected sequence of CGS interferograms of a growing crack in a three point

bend interfacial drop weight tower experiment. (Only PMMA side of PMMA/steel

specimen is shown)

Figure 9: Velocity, (a) and acceleration, (b) time histories for the experiment shown in

Figure 8.

Figure 10: Time histories of mismatch parameter c, (a) and its time derivative, (b) for

the experiment shown in Figure 8.
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Figure 11: Comparison of digitized data points from the interferogram corresponding

to t = 9.5psec in Figure 8 with, (a) a Kd-dorninant fit, equation (7.9); (b) a higher

order transient analysis fit, equation (7.10). (Crack lies along the negative xl-axis)

Figure 12: Comparison of digitized data points from the interferogram corresponding

to t = 23psec in Figure 8 with, (a) a KId -dominant fit, equation (7.9); (b) a higher

order transient analysis fit, equation (7.10). (Crack lies along the negative xi-axis)

Figure 13: Selected sequence of CGS interferograms of a growing crack in an one point

bend interfacial gas gun experiment. (Only PMMA side of PMMA/steel specimen

is shown)

Figure 14: Velocity, (a) and acceleration, (b) time histories for the experiment shown

in Figure 13.

Figure 15: Time histories of mismatch parameter c, (a) and its time derivat.ve, (b) for

the e,.t.eriment shown in Figure 13.

Figure 16: Comparison betweep the CGS fringe pattern and I" fitted higher order

transient stress field, equation (7.10), for a propagating crack in a PMMA/steel

interface.

Figure 17: Velocity time history for the experiment shown in Figure 18.

Figure 18: Selected sequer ce of CGS interferograms of a growing crack in an one point

bend interfacial gas gun experimcA. (A blunt staw ter notch was used)

Figure 19: CGS aiterferograms providing visual evidence of the highl, transient nature

of dynamic interfacial crack growth.
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Figure 11: Comparison of digitized data points from the interferogram corresponding to
t = 9.5ptsec in Figure 8 with, (a) a Kd-dominant fit, equation (7.9); (b) a higher order
transient analysis fit, equation (7.10). (Crack lies along the negative xl-axis)
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Figure 12: Comparison of digitized data points fi )m the interferogram corresponding to

f = 23psec in Figure 8 with, (a) a Kd-dominant fit, equation (7.9); (b) a higher order transient

analysis fit, equation (7.10). (Crack lies along the negative xl-axis)
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Figure 14: Velocity, (a) and acceleration, (b) time histories for the experiment shown in

Figure 13.
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Figure 15: Time histories of mismatch parameter E, (a) and its time derivative, (b) for the
experiment shown in Figure 13.
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Figure 17: Velocity time history for the experiment shown in Figure 18.
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